
 

Turning Mathematics 
into Jewelry 

 
CHRISTOPHER HANUSA 
Recent developments in 3D modeling make it 
possible to bring mathematical concepts to a wide 
audience. I have used various 3D design 
techniques in Mathematica to create precise and 
intricate jewelry models based on mathematical 
ideas. Some of the models are 3D printed in nylon 
and dyed in bright colors while others are 3D 
printed in metals such as brass or silver through a 
lost-wax casting method.  

Here I will share mathematical ideas behind 
some of the pieces of jewelry I have created for 
Hanusa Design along with artistic decisions made 
to balance the ideal mathematical concept with 
the final physical form. 
 
Koch Tetrahedron  
Start with an equilateral triangle. Replace the 
middle third of each of the edges by a bump that 
would form an equilateral triangle with the 
removed segment. Repeat this same process on 
the new shape, replacing the middle third of each 
line segment by an equilateral bump. Iterating this 
process indefinitely results in a well-known fractal 
called The Koch snowflake. Figure 1 demonstrates 
the first three iterations of the snowflake: the 
newly added edges at each step have been 
colored. 
 

 
Figure 1. Building the Koch snowflake. 
 

By construction, the area of the limiting shape is 
bounded; however, the limiting shape also has 
arbitrarily large perimeter! (You can see this 
because the total perimeter is multiplied by 4 / 3 in 

every iteration.) I used the third iteration of the 
Koch snowflake to design a pendant (figure 2). 
 

 
Figure 2. A pendant based on the Koch snowflake. 
 

The Koch tetrahedron generalizes the Koch 
snowflake to the third dimension. In this case, 
begin with a tetrahedron and iteratively apply the 
following transformation to every triangular face. 
Divide the triangular face into four congruent 
equilateral triangles. The center triangle of this 
dissection (one quarter of the area of the face) is 
replaced by a bump that forms a regular 
tetrahedron. Now, the volume of this object is 
bounded while its surface area grows without 
bound. (The multiplicative factor is 6/4 instead of 
4/3.) Figure 3 demonstrates the first three 
iterations of the construction where the newly 
added faces at each step have been colored. 
 

 
Figure 3. Building the Koch tetrahedron. 
 

To turn this construction into jewelry, I partially 
performed two iterations in order to better show 
the smallest tetrahedra. A fascinating property of 
the limiting fractal shape of the Koch Tetrahedron 



is that it nestles perfectly inside a cube; this is 
visible in the pairs of earrings shown in figure 4. 
 

 
 
Figure 4. Koch tetrahedron earrings. 
 
Apollonian circle packing  
A circle packing of a region is an arrangement of a 
collection of non-overlapping circles in the region 
where none of the circles can be enlarged without 
overlapping another circle or the boundary of the 
region. One mathematically rich circle packing is 
known as an Apollonian gasket. Start with three 
mutually tangent circles, each tangent to a fourth 
circular boundary, as shown on the left in figure 5. 
Iteratively add the inscribed circle for every triple 
of mutually tangent circles. The first four circles 
added appear in the middle image in figure 5. As 
this process continues, the space between the 
placed circles fills in with smaller and smaller 
circles, as shown on the right in figure 5. 
 

 
 
Figure 5. Iteratively building an Apollonian gasket.  
 

If the boundary circle is the unit circle and the 
curvature (defined as the reciprocal of the radius, 
1 / r) of each initial circle is an integer, then every 
circle in this construction also has integral 
curvature! (See Graham et al., “Apollonian circle 
packings: number theory,” J. Number Theory, 
100(1) 1–45 [2003] for more details and beautiful 
visualizations.) A blog post by Brent Yorgey 
inspired me to program this construction, which 
led to two distinctive pairs of earrings and a 
necklace. I especially enjoyed the result of 
removing the outer circle in my mismatched pair 

of Bubbly Apollonian Earrings (shown in purple 
nylon in figure 6). 
 
 

 
 
Figure 6. Bubbly Apollonian Earrings. 
 
Cobweb Plots 
Suppose you take the unit interval  and a 
function  Iterating the function to build 
the infinite sequence 

 
where  creates a discrete 

dynamical system for any initial value  A 
cobweb plot of this system is a two-dimensional 
visualization of the dynamics of this one-
dimensional system, created by a sequence of line 
segments connecting the points  

 and  for all  
The construction of the cobweb plot manifests 
itself as a path that bounces back and forth 
between the graph of the function  and 
the graph of the diagonal line  Figure 7 is an 
example when f is a cubic function and the initial 
x-value is 0.8995.  
 

 
Figure 7. A cubic function (in blue), the line y = x (in 
red) and the cobweb plot on 8 iterations of the 
function starting at 0.8995. 
 

X = [0,1]
f : X → X.

(x, f (x), f 2(x), f 3(x),…),
f n(x)= ( f ! f n−1)(x),

x∈ X.

( f i(x), f i(x)),
( f i(x), f i+1(x)), ( f i+1(x), f i+1(x)) i≥ 0.

y= f (x)
y= x.

i f i(x )
0 0.8995
1 0.125
2 0.926
3 0.196
4 0.998
5 0.488
6 0.530
7 0.422
8 0.698
9 0.067



Katherine Moore introduced me to this 
construction in a talk about her joint work with 
Sergi Elizalde, in which they considered situations 
where the sequence is periodic (“Characterizations 
and enumerations of patterns of signed shifts,” 
Discrete Appl. Math., 277 92–114 [2020]).  

The sequences can be ensured to be periodic for 
certain piecewise-linear functions. In such a case, 
the cobweb plot is a closed loop. To create the 
Cobweb Earrings shown in figure 9, I chose two 
different starting values of x for the three-piece 
function pictured on the left of figure 8. To create 
the pendant for the Cobweb Necklace in figure 9, I 
used the four-piece function on the right in figure 
8. To add a little artistic flair, I added a minor 
depth change in the z-coordinate at each turn. The 
end result is rather stunning. 
 

  
Figure 8. Two piecewise graphs used to create 
cobwebs for the jewelry in figure 9. 
 
 

 
Figure 9. Cobweb Earrings and Cobweb Necklace. 
 
Forbidden Subgraph Earrings  
In graph theory, a graph consists of an abstract 
collection of nodes and the edges that connect 
them. We call a graph planar if it can be drawn as 
a collection of points and connecting arcs in the 
plane without any of the arcs crossing each other 
and non-planar otherwise. For instance, the graph 
drawn on the left of figure 10 is planar even 
though it has overlapping edges, because it can be 
drawn as in the middle of the figure with no edges 
overlapping. However, there is no way to draw the 

graph on the right of figure 10 without 
overlapping edges. (This third graph is called the 
Petersen graph, and is notorious for being a 
counterexample to numerous conjectures.) 
 

   
Figure 10. The two graphs on the left are the same, 
and thus planar, while the Petersen graph, on the 
right, is non-planar. 
 

There are many ways to draw any one graph, so 
it would be nice to have a condition describing 
when an abstract graph is planar (even a large 
one). Luckily for us, Kuratowski’s theorem (also 
known as Pontryagin’s theorem) tells us that there 
are two forbidden configurations of nodes and 
edges in planar graphs. The two configurations 
are the complete bipartite graph on six vertices 
and the complete graph on five vertices (pictured 
in figure 11). A graph is non-planar if and only if it 
contains one of these configurations. I created 
nonintersecting three-dimensional embeddings of 
these two graphs as a pair of Forbidden Subgraph 
Earrings. (Remember, they can’t be drawn as 
nonintersecting two-dimensional embeddings!) 
When you wear these earrings, you’re wearing a 
theorem.  
 

 
 
Figure 11. The complete bipartite graph on six 
vertices (left), the complete graph on five vertices 
(middle), and the Forbidden Subgraph Earrings they 
inspired (right). 



 
Knight’s Tour Earrings  
The chessboard serves as a playground for various 
recreational mathematical ideas. For instance, a 
knight moves two squares horizontally and one 
square vertically (or vice versa). This type of move 
leads to an interesting question: Is it possible for a 
knight to move around an  chessboard in 
such a way that it will visit every square once 
before returning to its initial position? This is 
called a (closed) knight’s tour of the chessboard. 
Figure 13 shows one of the approximately 

 knight’s tours of the  chessboard. 
 

   
Figure 12. A knight’s tour on the standard chessboard 
(left), and a chessboard with no knight’s tour (right). 
 

On the other hand, it is not possible for there to 
exist a knight’s tour of the  chessboard in 
figure 13. First, a knight placed at the center 
square has no place to move. Second, the 
sequence of moves that a knight visits on a tour 
must always alternate between black and white 
squares. This means that if both m and n are odd, 
the numbers of black and white squares are 
different, so a knight’s tour would be impossible. 

If we remove the central square in the  
chessboard, figure 13 shows a knight’s tour on the 
remaining board. I took this idea to the next 
dimension to create jewelry. For a 3D 
chessboard—made of cubes instead of squares—I 
decided that a knight would move two cubes in 
one direction and one cube in an orthogonal 
direction. Figure 14 contains a visualization of the 
set of all possible such 3D knight moves on a 

 chessboard. If we remove all moves that 
visit a corner, the remaining edges have a three-
dimensional star shape; these form the basis for 
my Starry Knight Earrings, pictured in figure 15. 

 
 

Figure 13. A 3D chessboard, all possible 3D knight 
moves, and moves that don’t visit a corner. 

 
 
Figure 14. Starry Knight Earrings. 
 
If we instead try to form a knight’s tour on the 

 chessboard, once again the center 
position is inaccessible from the others. However, 
upon removing that position from consideration, 
the numbers of black and white cubes are off by 
two. Strategically removing two additional cubes 
of the same color makes a knight’s tour possible; I 
used Mathematica to choose two random knight’s 
tours of the resulting graph. Can you find where 
the missing cubes are? As an additional artistic 
choice, these Knight’s Tour Earrings are a 
mismatched pair colored black and white to 
highlight the connection to chess. 
 

 
 
Figure 15. Knight’s Tour Earrings. 
 
Concluding Thoughts 
I am inspired by all sorts of mathematics and am 
always on the lookout for examples of visual 
mathematics. If you have some math that could be 
transformed into jewelry, contact me at 
math@hanusadesign.com and let’s talk! 
 
Christopher Hanusa is a professor of 
mathematics at Queens College of the City 
University of New York. His research is in 
algebraic and enumerative combinatorics, and he 
is an internationally exhibited mathematical 
artist. He would like to offer readers 15% off any 
order at his 3D printed mathematical jewelry  
company Hanusa Design, using promo code 
HORIZONTAL through November 15, 2022. 
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