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ABSTRACT. An n-core partition is an integer partition whose Young diagram contains no hook lengths
equal to n. We consider partitions that are simultaneously a-core and b-core for two relatively prime
integers a and b, which correspond to abacus diagrams and the combinatorics of the affine symmetric group
(type A). We observe that self-conjugate simultaneous core partitions correspond to type C combinatorics,
and use abacus diagrams to unite the discussion of these two sets of objects.

In particular, we prove that 2n- and (2mn+1)-core partitions correspond naturally to dominant alcoves
in the m-Shi arrangement of type Cn, generalizing a result of Fishel–Vazirani for type A. We also introduce
a major statistic on simultaneous n- and (n + 1)-core partitions and on self-conjugate simultaneous 2n-
and (2n+ 1)-core partitions that yield q-analogues of the type A and type C Coxeter-Catalan numbers.

We present related conjectures and open questions on the average size of a simultaneous core partition,
q-analogs of generalized Catalan numbers, and generalizations to other Coxeter groups. We also discuss
connections with the cyclic sieving phenomenon and q, t-Catalan numbers.

To the reader: Section 1 consists of a narrative introducing core partitions, a placement of our results in
historical context, and intriguing related conjectures. Section 2 introduces precise definitions of abacus
diagrams, which serve as the basis for the proofs of our results. The focus of Section 3 is alcoves in
m-Shi arrangements of types A and C. The key result is Theorem 3.5, which characterizes m-minimal
and m-bounded regions as a simultaneous core condition, generalizing the result of Fishel and Vazirani
[FV10] through a unified method. Theorem 4.4 gives a major statistic on simultaneous core partitions to
find a q-analog of the typeA and type C Catalan numbers using abacus diagrams and their bijection with
lattice paths; this is the main goal of Section 4. We conclude with a few more open problems motivated
by this paper. We hope you enjoy it!

1. CORES AND CONJECTURES

A partition of the integer n ∈ N is an unordered multiset of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk > 0

such that
∑k

i=1 λi = n. We will write this as λ = (λ1, λ2, . . . , λk) ` n, and say that the size of the
partition is n and the length of the partition is k. We will often associate a partition λ with its Young
diagram, which is a an array of boxes aligned up and to the left, placing λi boxes in the ith row from
the top. For example, here is the Young diagram for the partition (5, 4, 2, 1, 1) ` 13.
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To each box B ∈ λ in the partition we associate its hook length h(B), which is the number of cells
directly below and directly to the right ofB (includingB itself). For example, here we have labeled each
box with its hook length, with an example hook of length 6 shaded.

We say that an integer partiton λ ` n is a-core if it has no boxes of hook length a. The reason for
the name “a-core” is as follows. If a box B ∈ λ has hook length h(B) = a, then we could also say that
λ has a rim a-hook consisting of the cells along the boundary of λ, traveling between the box furthest
below B and the box furthest to the right of B. The boxes of this rim hook can then be stripped away to
create a smaller partition. For example, here we have stripped away the rim 6-hook from our previous
example.

If we continue stripping away rim a-hooks from λ we eventually arrive at a partition λ̃ that has no
boxes of hook length a. The resulting λ̃ is called the the a-core of λ. For example, we see above that
(3, 1, 1, 1, 1) ` 7 is the 6-core of (5, 4, 2, 1, 1) ` 13. Thus it makes sense to say that a partition λ is
“a-core” when it is equal to its own a-core.

However, it is not obvious from the above construction that the a-core of a partition is well-defined.
We must show that the resulting partition is independent of the order in which we remove rim a-hooks.
This at first seems difficult, but there is a beautiful argument of James and Kerber that makes it easy. In
order to explain this we introduce the abacus notation for integer partitions.

First note that we can encode an integer partition as an infinite binary string beginning with 0s and
ending with 1s. To do this we think of the partition sitting in an infinite corner. Then we replace vertical
steps by 0 and horizontal steps by 1. The partition corresponds to the binary word we get by reading up
from infinity, traversing the boundary of the partition, and then traveling right to infinity. For example,
our favorite partition (5, 4, 2, 1, 1) ` 13 yields the string · · · 00100101101011 · · · . This boundary string
contains useful information. For example, the boxes of the partition are in bijection with inversions in
the string, i.e., pairs of symbols in which 1 appears to the left of 0. Furthermore, boxes with hook length
p correspond to inversions of “length a” (i.e., with the 1 and 0 separated by a− 1 intervening symbols).
Using this language we see that the removal of a rim a-hook corresponds to converting an inversion of
length a into a non-inversion of length a. For example, in the following diagram we have replaced the
substring 1011010 by 0011011.
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Finally, we can wind the boundary string around a cycle of length a to obtain an abacus diagram. Here
we read the boundary string from left to right and then proceed to the next row below. We think of the
columns as runners, the 0s as beads, and the 1s as gaps. In this language, the removal of a rim a-hook
corresponds to sliding a bead up one level into a gap.

We see from this that a-cores are well-defined: we simply push all the beads up on their runners until
there are no more gaps and we say that the abacus diagram is now a-flush. This argument is due to James
and Kerber [JK81, Lemma 2.7.13], although they used slightly different notation.

Now we turn to the main subject of the current paper: simultaneous core partitions. We say that an
integer partition λ ` n is (a, b)-core if it is simultaneously a-core and b-core. Our primary interest in
(a, b)-cores is motivated by the following result of Jaclyn Anderson from 2002.

Theorem 1.1. [And02] The total number of (a, b)-core partitions is finite if and only if a and b are
coprime, in which case the number is

(1.1)
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
.

Note: when a and b are not coprime, Formula (1.1) is not necessarily even an integer. We now sketch
the idea and provide a proof of Anderson’s bijection in Proposition 4.5. Note that an integer partition λ
is completely determined by the hook lengths of the boxes in its first column. These boxes are also in
bijection with a set of beads in a certain normalized abacus diagram. If λ is (a, b)-core, then its beads
must be flush simultaneously in two ways. Anderson’s construction beautifully creates a shifted abacus
diagram where the a-flush condition is horizontal and the b-flush condition is vertical.

This gives a bijection between (a, b)-cores and lattice paths in Z2 from (0, 0) to (b, a), staying above
the diagonal. We call these (a, b)-Dyck paths. For example, our favorite partition is a (5, 8)-core,
corresponding to the following (5, 8)-Dyck path.
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It was known since at least Bizley [Biz54] that the (a, b)-Dyck paths (with a and b coprime) are counted
by Formula (1.1), which is a generalization of the classical Catalan numbers.

Next we discuss self-conjugate core partitions. Given an integer partition λ = (λ1, λ2, . . . , λk) ` n,
we define the conjugate partition λ′ = (λ′1, λ

′
2, . . . , λ

′
`) ` n by setting

λ′j := #{j : λj ≥ i}.

Equivalently, the Young diagram of λ′ is obtained by reflecting the Young diagram of λ across the main
diagonal. For example, the partitions (5, 4, 2, 1, 1) ` 13 and (5, 3, 2, 2, 1) ` 13 are conjugate.

Observe that λ is (a, b)-core if and only if λ′ is (a, b)-core. Thus one may be interested in studying the
self-conjugate (a, b)-cores. In 2009, Ford, Mai and Sze proved the following analogue of Anderson’s
theorem.

Theorem 1.2. [FMS09] If a and b are coprime, then the number of self-conjugate (a, b)-cores is(⌊a
2

⌋
+
⌊
b
2

⌋⌊
a
2

⌋
,
⌊
b
2

⌋ ) =
(
⌊
a
2

⌋
+
⌊
b
2

⌋
)!⌊

a
2

⌋
!
⌊
b
2

⌋
!

Before discussing their proof, we make some numerological observations. Given k ≤ n ∈ N, we
define the standard q-integer, q-factorial and q-binomial coefficient:

[n]q := 1 + q + q2 + · · · qn−1,

[n]q! := [n]q[n− 1]q · · · [2]q[1]q,[
n

k

]
q

:=
[n]q!

[k]q! [n− k]q!
.

Inspired by formula (1.1) we define the rational q-Catalan number:

(1.2) Catq(a, b) :=
1

[a+ b]q

[
a+ b

a, b

]
q

=
[a+ b− 1]q!

[a]q! [b]q!
.

Observe that the case (a, b) = (n, n+1) corresponds to the classical “q-Catalan number” of MacMahon:

Catq(n, n+ 1) =
1

[n+ 1]q

[
2n

n

]
q

.

MacMahon proved that Catq(n, n + 1) is in N[q] by defining a statistic on lattice paths, which is now
called “major index” (in honor of the fact that MacMahon held the rank of major in the British Army).
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First, note that the final step of an (n, n + 1)-Dyck path must be horizontal, and removing this last step
defines a bijection between (n, n+1)-Dyck paths and classical Dyck paths from (0, 0) to (n, n), staying
weakly above the diagonal. Given a classical Dyck path P , we define the major index as follows. Begin
at (0, 0) and call this vertex 0. Then maj(P ) is the sum of i such that the step (i − 1) → i is horizontal
and i→ (i+ 1) is vertical (or in other words, the ith vertex is a “valley” of the path). MacMahon proved
the following.

Theorem 1.3. [Mac60, page 214] We have∑
P

qmaj(P ) =
1

[n+ 1]q

[
2n

n

]
q

,

where the sum is over (n, n+ 1)-Dyck paths P (equivalently, classical Dyck paths P ).

We note that the “q-Catalan” numbers Catq(n, n+1) were studied by Furlinger and Hofbauer [FH85].
The following problem is open.

Open Problem 1.4. Given a, b ∈ N coprime, define a statistic stat on (a, b)-Dyck paths, or equivalently
on (a, b)-cores, such that ∑

P

qstat(P ) = Catq(a, b) =
1

[a+ b]q

[
a+ b

a, b

]
q

.

Preferably we would have stat = maj when (a, b) = (n, n+ 1).

We would even like an elementary proof that Catq(a, b) is a polynomial in N[q] when a, b ∈ N are
coprime. (The only known proof of this fact [GG12, Section 1.12] uses the representation theory of
rational Cherednik algebras.) We conjecture a solution to Problem 1.4 below.

Here is another open problem.

Open Problem 1.5. One can verify the following evaluation at q = −1:

1

[a+ b]q

[
a+ b

a, b

]
q

∣∣∣∣∣
q=−1

=

(⌊a
2

⌋
+
⌊
b
2

⌋⌊
a
2

⌋
,
⌊
b
2

⌋ ).
Is this an example of a “cyclic sieving phenomenon”? (See the survey [Sag11] for details.) That is, does
there exist a cyclic group action on (a, b)-cores such that “rotation by 180◦” corresponds to conjugation
of the partition? Can one use this to view the results of Anderson and Ford-Mai-Sze as two special cases
of a more general theorem?

We also state a related conjecture.

Conjecture 1.6. Let a, b ∈ N be coprime. Then the average size of an (a, b)-core and the average size
of a self-conjugate (a, b)-core are both equal to

(1.3)
(a+ b+ 1)(a− 1)(b− 1)

24
.

Olsson and Stanton [OS07] proved that there is a unique (a, b)-core of maximum size (which happens to
be self-conjugate), and this size is

(a2 − 1)(b2 − 1)

24
.

Thus we can rephrase our conjecture by stating that the average ratio between an (a, b)-core and the
largest (a, b)-core is

(a+ b+ 1)

(a+ 1)(b+ 1)
.
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This conjecture was observed experimentally by the first author in 2011 and has been publicized
informally since then. While the second author has been able to prove Formula (1.3) for small values of
a, a framework to prove the conjecture in general has been met with frustratingly little progress. The fact
that the same average size holds for both (a, b)-cores and self-conjugate (a, b)-cores makes it seem that
the conjecture may be related to Problem 1.5.

Now we return to a discussion of the Ford-Mai-Sze theorem. Their proof is an ingenious bijection
between self-conjugate (a, b)-cores and lattice paths in a

⌊
a
2

⌋
×
⌊
b
2

⌋
rectangle. But perhaps too ingenious,

since it does not involve abacus diagrams, and it makes no connection to Anderson’s theorem. In the
current paper we give a more natural interpretation of the Ford-Mai-Sze result using the type C abacus
model recently developed by the second and third authors [HJ12]. In this language we will see that there
is a natural framework in which Anderson’s result corresponds to the affine Weyl group of type A and
the Ford-Mai-Sze result corresponds to the affine Weyl group of type C.

We will also describe an analogous relationship between the Shi hyperplane arrangements of types
A and C. Given a finite cystallographic root system Φ ⊆ V with positive roots Φ+, the m-Shi arrange-
ment consists of the hyperplanes

Shim(Φ) = ∪α∈Φ+ {Hα,−m+1, Hα,−m+2, · · ·Hα,m−1, Hα,m} ,
where Hα,k = {x ∈ V : 〈x, α〉 = k}. Each chamber of the m-Shi arrangement is a union of alcoves,
which can be thought of as elements of the corresponding affine Weyl group. These alcoves, in turn, can
be encoded by abacus diagrams.

Fishel and Vazirani considered the m-Shi arrangement of type An−1. They used abacus diagrams to
construct a bijection between minimal alcoves in all the chambers of Shim(An−1) and (n,mn+ 1)-core
partitions [FV10], and a bijection between maximal alcoves in the bounded chambers of Shim(An−1)
and (n,mn − 1)-core partitions [FV09]. In Section 3 of this paper we use the type C abacus diagrams
of Hanusa and Jones to prove the following new result: There is a bijection between minimal alcoves
of the chambers of Shim(Cn) and self-conjugate (2n, 2mn + 1)-cores, and there is a bijection between
maximal alcoves in the bounded chambers of Shim(Cn) and self-conjugate (2n, 2mn − 1)-cores. It is
an open problem to extend the theory to types B and D. The study of (a, b)-cores when b = ±1 mod a
is called the “Fuss-Catalan” level of generality. It is also an open problem to extend these results on Shi
arrangements to more general b.

Finally, we return to the problem of q-Catalan numbers. For any finite reflection group G with “de-
grees” d1 ≤ d2 ≤ · · · ≤ d` =: h, one can define a q-Catalan number

Catq(G) =
∏̀
i=1

[h+ di]q
[di]q

.

For definitions see Section 2.7 of [Arm09]. It is known that Catq(G) ∈ N[q] (see [GG12]), but combi-
natorial interpretations of this fact are missing in almost all cases. The (symmetric) group of type An−1

has degrees 2, 3, . . . , n, and so

Catq(An−1) =
1

[n+ 1]q

[
2n

n

]
q

,

which we discussed above. The group of typeCn (the hyperoctahedral group) has degrees 2, 4, 6, . . . , 2n,
and so

Catq(Cn) =

[
2n

n

]
q2
.

In Section 4 of this paper we will describe explicit “major index” type statistics on (n, n + 1)-cores
and self-conjugate (2n, 2n + 1)-cores which explain the numbers Catq(An−1) and Catq(Cn). These
are obtained by transfering the standard “major index” on lattice paths via the bijections of Anderson
and Ford-Mai-Sze. The new observation is that the statistics are so natural to express in the language of
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abacus diagrams. It is an open problem to define a similar statistic on general (a, b)-cores (see Problem
1.4). However, we will now state a conjecture that may solve the problem.

Given an (a, b)-core λ, we say that its b-boundary consists of the skew-subdiagram of boxes with
hook lengths < b. We define the a-rows of λ as follows. Consider the boxes in the first column of λ
and reduce their hook lengths modulo a. Consider the highest row in each residue class. These are the
a-rows of the diagram.

Definition 1.7. Let λ be an (a, b)-core partition with a < b coprime. The skew length s`(λ) is the
number of boxes of λ that are simultaneously in the b-boundary and the a-rows of λ.

For example, the partition (7, 6, 2, 2, 2, 2) ` 21 is a (7, 8)-core, and its skew length is 13.

Recall that the length of an integer partition `(λ) is its number of nonzero rows. Then we make the
following conjecture.

Conjecture 1.8. Let a < b be coprime. Then we have∑
λ

q`(λ)+s`(λ) =
1

[a+ b]q

[
a+ b

a, b

]
q

,

where the sum is over (a, b)-cores λ.

For example, the (7, 8)-core shown above has `(λ) + s`(λ) = 6 + 13 = 19. We might be tempted to
define a statistic maj(λ) = `(λ)+s`(λ). Unfortunately, in the classical Catalan case of (n, n+1)-cores,
the statistic `+ s` is not clearly related to any of the known “major index” type statistics.

We expect Conjecture 1.8 to be difficult. In fact, it is just a shadow from the more general subject of
q, t-Catalan combinatorics. To illustrate this, define the co-skew-length of an (a, b)-core by s`′(λ) =
(a− 1)(b− 1)/2− s`(λ).

Conjecture 1.9. Let a < b be coprime. Then we have

(1.4)
∑
λ

q`(λ)ts`
′(λ) =

∑
λ

t`(λ)qs`
′(λ),

where the sum is over (a, b)-cores λ.

Either side of equation (1.4) should be regarded as a “rational q, t-Catalan number”. Then Conjecture
1.9 is a generalization of the “symmetry problem” for q, t-Catalan numbers. This problem is quite hard
(see, for example, [Hag08]). Thus, even partial progress is welcome.

To end this section we point to some related work. The “rational q, t-Catalan numbers” (1.4) have
been independently defined and studied by Gorsky and Mazin [GM13, GM12], and they will also appear
soon in a paper of Armstrong, Loehr, and Warrington [ALW13]. The paper [ALW13] will explore three
different interpretations of the “skew length” statistic. (In addition to the interpretation here, the other
two are due to Gorsky–Mazin and Loehr–Warrington.) Finally, the general subject of “rational Catalan
numbers” and related structures has been studied by Armstrong, Rhoades ,and Williams [ARW13].
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2. ABACUS DIAGRAMS

An abacus diagram (or simply abacus) is a diagram containing R columns labeled 1, 2, . . . , R,
called runners. Runner i contains entries labeled by the integers mR + i for each level m where
−∞ < m <∞.

We draw the abacus so that each runner is vertical, oriented with −∞ at the top and∞ at the bottom,
with runner 1 in the leftmost position, increasing to runner R in the rightmost position. Entries in the
abacus diagram may be circled; such circled elements are called beads. Entries that are not circled are
called gaps. We refer to the collection consisting of the lowest beads in each runner as the defining
beads of the abacus. We say that an abacus is j-flush if whenever position e is a bead in the abacus we
have that e− j is also a bead.

As this construction essentially defines a labeling on the infinite binary string from Section 1, two
abacus diagrams are equivalent if the infinite sequence of beads and gaps are the same (so that their
entries only differ by a constant position). Two common ways to standardize an abacus diagram are to
make it normalized or balanced. We say that an abacus is balanced if the sum of the levels of the defining
beads of the abacus is zero. We say that an abacus is normalized if the first gap occurs in position 0.
(And when normalized, we may relabel runner R as runner 0 and place it on the left.)

Balanced, n-flush abacus diagrams with n runners are in bijection with minimal length coset repre-
sentatives of type Ãn/An by interpreting the defining beads of the abacus (written in increasing order)
as the entries in the base window of the corresponding affine permutation.

Further, the classical argument of James [JK81] described in Section 1 gives a bijection between the
set of balanced n-flush abacus diagrams and the set of n-core partitions: Given an abacus, we create a
partition whose southeast boundary is the lattice path obtained by reading the entries of the abacus in
increasing order and recording a north-step for each bead, and recording an east-step for each gap.

Example 2.1. The 4-core partition λ = (3, 3, 1, 1, 1) corresponds to a 4-flush abacus and to the element
[−4, 1, 6, 7] in Ã3/A3. The corresponding abacus presented here is both normalized (the first gap is in
position 0) and balanced (the levels of the defining beads on runners 1 through 4 are 0, 1, 1, −2, which
sum to 0). On the right is the alternative method of drawing this same normalized abacus on runners 0
through 3.

7 3 2

6 2 1

3

2

1

−7 −6 −5 −4

−3 −2 −1 0

1 2 3 4

5 6 7 8

9 10 11 12

−8 −7 −6 −5

−4 −3 −2 −1

0 1 2 3

4 5 6 7

8 9 10 11

In [HJ12], the second and third authors introduced an abacus diagram model with R = 2n runners
to represent minimal length coset representatives of type C̃n/Cn. In this type C abacus model, we use
N = 2n + 1 implicit labels per row so that the linear ordering of the entries of the abacus are given by
the labels mN + i for level m ∈ Z and runner 1 ≤ i ≤ 2n. (Under these conventions, there are no
entries in any type C abacus having labels {mN : m ∈ Z}.)

We also impose a stricter definition of balanced on a type C abacus—the level of the defining bead on
runner i is the negative of the level of the defining bead on runner N − i. This imposes an antisymmetry
on type C abaci where entry N − b is a bead if and only if entry N + b is a gap. Restricting James’s
bijection gives a bijection between the set of type C balanced 2n-flush abacus diagrams and the set of
self-conjugate 2n-core partitions. Under this construction, we can then interpret the defining beads of
abacus written in increasing order as the corresponding minimal length coset representative of C̃n/Cn
written in one-line notation as a mirrored Z-permutation, just as in type A.
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Throughout this paper, we work in types A and C simultaneously by letting N be the number of
implicit labels used on each row of the abacus, so N = n in type A and N = 2n+ 1 in type C. We also
let R be the number of runners in the abacus, so R = n in type A and R = 2n in type C.

Example 2.2. In C̃2, consider the mirrored Z-permutation determined by [w(1), w(2), w(3), w(4)] =
[−2, 1, 4, 7]. The corresponding abacus diagram is

−9 −8 −7 −6

−4 −3 −2 −1

1 2 3 4

6 7 8 9

11 12 13 14

and the corresponding self-conjugate 4-core partition is (2, 1).

3. REGIONS OF THE m-SHI ARRANGEMENT

Consider the root system of type An−1 or type Cn embedded in a Euclidean space V = Rn with inner
product (·, ·) and orthonormal basis {ε1, . . . , εn}. Then the m-Shi hyperplane arrangement consists of
v ∈ V such that

−m < (v, α) ≤ m for all positive roots α.
For example, the hyperplanes in type An consist of v =

∑n
i=1 viεi such that

vi − vj ∈ {0, 1, . . . ,m} for 1 ≤ i < j ≤ n,

while for type Cn we additionally have

vi + vj ∈ {0, 1, . . . ,m} for 1 ≤ i < j ≤ n
2vi ∈ {0, 1, . . . ,m} for 1 ≤ i ≤ n .

In this work, we restrict to the dominant cone {v ∈ V : (v, α) ≥ 0 for all positive roots α}. Pictures
from rank 2 are shown in Figures 1 and 2. A bar over a number represents the negative of that number.

s2

s1 s0
1 2 3

0 2 4

1̄ 3 4

2̄ 3 5

3̄ 4 5

0 1 5
1̄ 1 6

2̄ 2 6

3̄ 2 7

4̄ 3 7

1̄ 0 7 3̄ 1 8 5̄ 2 9

FIGURE 1. The m = 2 Shi arrangement in A2

Recall from [Hum90, Chapter 4] that the affine Weyl group acts on V by reflections, and so V de-
composes into alcoves that are the connected components of the complement of the set of hyperplanes
orthogonal to positive roots together with all their parallel translates. Denote the fundamental alcove by
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s1

s2 s0
1 2 3 4

1̄ 2 3 6 2̄ 1 4 7

2̄ 1̄ 6 7

3̄ 1 4 8

3̄ 1̄ 6 8 4̄ 2̄ 7 9

4̄ 3̄ 8 9

6̄ 2̄ 7 11

4̄ 2 3 9

6̄ 2 3 11 7̄ 1 4 12

7̄ 1̄ 6 12

8̄ 1 4 13 11 2̄ 7 16

9̄ 3̄ 8 14

9̄ 2 3 14 12 1̄ 6 17 14 3̄ 8 19

FIGURE 2. The m = 2 Shi arrangement in C2

A◦. Then there is a simply transitive action of the affine Weyl group on the set of alcoves. In fact, there
are two actions: the left action reflects an alcove (non-locally) across one of the defining hyperplanes,
while the right action reflects an alcove (locally) across one of its bounding hyperplanes. Then, we have
that wA◦ corresponds to a dominant alcove if and only if w is “left grassmannian” in the sense that
DL(w) ⊆ {s0}, where DL denotes the left descent set.

We can read off the right (local) descents and the left (non-local) inner products ofwA◦ simultaneously
from the abacus, a result of Shi [Shi99, Theorem 4.1].

Lemma 3.1. Let w(i) denote the ith entry of the one-line notation for w, or equivalently, the position of
the ith defining bead in the abacus for w in type A or C. Then the inner product of any point in wA◦
with a positive root α satisfies⌊

w(j)− w(i)

N

⌋
< (wA◦, α) <

⌊
w(j)− w(i)

N

⌋
+ 1,

for some 1 ≤ i < j ≤ R.

Proof. This follows from the symmetry of the abacus and [HJ12, Theorem 4.1]. It is straightforward
to work out the correspondence between differences and positive roots. For example, the inner product
with ei + ej in type C can be realized as bw(n+j)−w(i)

N c. �

Lemma 3.2. In types A and C, w has si as a right descent if and only if the position of the defining
bead in column i+ 1 is at least N plus the position of the defining bead in column i (where column 0 is
interpreted as column 2n in type C, and column n in type A).

Proof. This follows from [HJ12, Section 3.2]. �

As a consequence of these lemmas, it is possible to read off the “Shi coordinates” of an alcove that
specify the number of translations in each positive root direction.

Example 3.3. The alcove labeled 1̄16 in Figure 1 lies
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•
⌊1−(−1)

3

⌋
= 0 translates past the hyperplane labeled s1

•
⌊

6−1
3

⌋
= 1 translate past the hyperplane labeled s2

•
⌊6−(−1)

3

⌋
= 2 translates past the hyperplane labeled s0.

If we reflected the labeling of the boundary of A◦ by w, we would find that s2 is the unique right descent
of 1̄16, corresponding to the fact that 6 is the position of the defining bead in column 3 and this lies at
least N = 3 positions past the defining bead in column 2.

Example 3.4. The alcove labeled 4̄2̄79 in Figure 2 lies

•
⌊ (−2)−(−4)

5

⌋
= 0 translates past the hyperplane labeled s1

•
⌊7−(−2)

5

⌋
= 1 translate past the hyperplane labeled s2

•
⌊9−(−4)

5

⌋
= 2 translates past the hyperplane labeled s0

•
⌊7−(−4)

5

⌋
= 2 translates past the hyperplane perpendicular to the remaining positive root e1 +e2.

The unique right descent for this element is s1.

We say that a dominant alcove is m-minimal if it is the unique alcove of minimal length in its region
of the m-Shi arrangement. We say that a dominant alcove is m-bounded if it is the unique alcove of
maximal length in its region of the m-Shi arrangement. The uniqueness of these alcoves was shown in
[Ath05]. Our main result in this section is the following theorem. A less explicit proof for type A is
given in [FV10].

Theorem 3.5. In typesA andC, a dominant alcove ism-minimal if and only if the corresponding abacus
diagram is (Rm+ 1)-flush. Moreover, a dominant alcove is m-bounded if and only if the corresponding
abacus diagram is (Rm− 1)-flush.

Proof. Let wA◦ be a dominant alcove. Then wA◦ is m-minimal if it is the minimal length alcove in
its region of the m-Shi arrangement. Equivalently, for each descent si of w, we must have that w and
wsi are separated by an m-Shi hyperplane. Contrapositively, there do not exist two defining beads in
the abacus for w that form a right descent and contribute a left inner product with a positive root that is
greater than m.

By Lemmas 3.1 and 3.2, this means that the one-line notation for w never contains 1 ≤ i < j ≤ R
with ⌊

w(j)− w(i)

N

⌋
> m

and (
w(j) mod N

)
≡
(
w(i) mod N

)
+ 1 (mod R)

But this is precisely equivalent to requiring that the abacus be (Rm+ 1)-flush.
Similarly, wA◦ ism-bounded if it is the maximal length alcove in its region of them-Shi arrangement.

This is equivalent to requiring that there do not exist two defining beads in w that form a right ascent
and have a left inner product with the corresponding positive root that is greater than m. Once again by
Lemmas 3.1 and 3.2, this means that the one-line notation for w never contains 1 ≤ i < j ≤ R with⌊

w(j)− w(i)

N

⌋
> m

and (
w(j) mod N

)
≡
(
w(i) mod N

)
− 1 (mod R)

This is precisely equivalent to requiring that the abacus be (Rm− 1)-flush. �
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Example 3.6. In type A2, m = 1, the m-minimal alcoves correspond to

123, 024, 015, 1̄34, 2̄26.

The element 2̄35 is not minimal because the 2̄ and 5 are off by 2 > m levels, and they form a descent
since 2̄ lies on column (−2 mod 3) = 1 of the abacus while 5 lies on column (5 mod 3) = 2.

The element 2̄26 is minimal because although 2̄ and 6 are off by 2 > m levels, we find that these two
entries do not form a descent on the abacus.

Example 3.7. In type C2, m = 1, the m-minimal alcoves correspond to

1234, 1̄236, 2̄147, 2̄1̄67, 4̄239, 7̄1̄6 12.

Corollary 3.8. The m-minimal alcoves in the m-Shi arrangement of type Cn are in bijection with self-
conjugate partitions that are (2n)-core and (2nm + 1)-core. The m-bounded alcoves in the m-Shi
arrangement of type Cn are in bijection with self-conjugate partitions that are (2n)-core and (2nm−1)-
core.

Applying Ford, Mai, and Sze’s formula [FMS09], we recover that there are
(
nm+n
n

)
dominant regions

and
(
nm+n−1

n

)
bounded regions in the m-Shi arrangement of type Cn. This agrees with Athanasiadis’s

[Ath04, Corollary 1.3].

4. A MAJOR STATISTIC ON SIMULTANEOUS CORE PARTITIONS

In this section, we define a major statistic that gives the q-analog of the Coxeter-Catalan numbers,
Catq(An−1) and Catq(Cn), for simultaneous core partitions in types A and C, respectively.

Definition 4.1. Let λ be a simultaneous (n, n+1)-core partition. Create the sequence x = (x0, . . . , xn−1)
where xi equals the number of boxes in the first column of λ with hook length equal to i mod n. (Note
x0 = 0 always.) Define

(4.1) maj(λ) =
∑

i :xi−1≥xi

(2i− xi).

Let λ be a self-conjugate simultaneous (2n, 2n+ 1)-core partition. We define the setW of diagonal
arm lengths {w1, w2, . . . , wk} where wi is one more than the number of boxes to the right of the i-th
box on the diagonal of λ. Create the sequence x = (x0, x1, . . . , xn) where x0 = 0 and

xi = |{w ∈ W : w mod 2n ≡ i}| − |{w ∈ W : w mod 2n ≡ 2n− i+ 1}|

for 1 ≤ i ≤ n. Define

(4.2) maj(λ) = 2
∑

i :xi−1≥xi

(2i− xi − 1).

Remark. Similar to the definition of the major statistic of a permutation, these sums are over the posi-
tions of the (weak) descents in a sequence. In terms of the abacus diagram, xi is the level of the defining
bead on runner i (in type A the abacus must be normalized first), so this definition of maj can also be
applied directly to the corresponding abacus diagram.

Example 4.2. For the (7, 8)-core partition λ = (7, 6, 2, 2, 2, 2), the hook lengths of the boxes in the
first column of λ are {12, 10, 5, 4, 3, 2}, which modulo 7 equals {5, 3, 5, 4, 3, 2}. We conclude that
x = (0, 0, 1, 2, 1, 2, 0) with weak descents in positions 1, 4, and 6. As such,

maj(λ) = (2 · 1− 0) + (2 · 4− 1) + (2 · 6− 0) = 21.
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−4 −3 −2 −1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
−4 −8 −12 −16 −20 −24 −28 −32 −36 −40 −44 −48 −52

9 5 1 −3 −7 −11 −15 −19 −23 −27 −31 −35 −39

22 18 14 10 6 2 −2 −6 −10 −14 −18 −22 −26

35 31 27 23 19 15 11 7 3 −1 −5 −9 −13

FIGURE 3. The (4, 13)-core partition λ = (7, 4, 4, 2, 2, 1, 1, 1) corresponds to a 4-flush
and 13-flush abacus a and a lattice path from (0, 0) to (13, 4) staying below y = 4

13x.
The boxes to the right of the lattice path correspond to the beads in the abacus.

Example 4.3. For the self-conjugate (14, 15)-core partition

µ = (19, 19, 16, 12, 9, 9, 9, 7, 7, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2),

the set of diagonal arm lengths is {19, 18, 14, 9, 5, 4, 3}, which modulo 14 gives {5, 4, 14, 9, 5, 4, 3}.
Therefore we have x = (0,−1, 0, 1, 2, 2,−1, 0) with weak descents in positions 1, 5, and 6. We find that

maj(µ) = 2
[(

2 · 1− 1− (−1)
)

+
(
2 · 5− 1− 2

)
+
(
2 · 6− 1− (−1)

)]
= 42.

The major result in this section is that

Theorem 4.4. The major statistic defined above gives a q-analog of the type A and type C Catalan
numbers. In particular,∑

λ is an
(n, n+ 1)-core

qmaj(λ) =
1

[n+ 1]q

[
2n

n

]
q

and
∑

λ is a self-conj.
(2n, 2n+ 1)-core

qmaj(λ) =

[
2n

n

]
q2
.

The proof of this result is given below; it uses the bijections between simultaneous core partitions,
abacus diagrams, and lattice paths. In type A, we quickly revisit and then apply Anderson’s bijection
[And02, Proposition 1]. In type C, Ford, Mai, and Sze [FMS09] developed a lattice path method to
count self-conjugate (a, b)-core partitions for a < b relatively prime. Hanusa and Jones’s abacus model
for type C [HJ12] streamlines this bijection and helps to develop further intuition about it.

Proposition 4.5 (Proposition 1, [And02]). The following is a bijection:

L :

{
a-flush and b-flush
abacus diagrams

}
←→

 N -E lattice paths
(0, 0)→ (b, a)

on or above y = a
bx

 .

[The reader will remark that we have applied a vertical reflection to Anderson’s original bijection.]

Proof. The bijection organizes integers into a square lattice, where the a-flush condition on an abacus
is read horizontally and the b-flush condition is read vertically, so that a N -E lattice path specifies a
normalized abacus that is both a-flush and b-flush by marking the dividing line between the set of beads
and the set of gaps.

More specifically, in the box with corners (i, j) and (i + 1, j + 1), place the integer −a(i + 1) + bj.
For a N -E lattice path L : (0, 0) → (b, a), interpret the number to the right of an up step to be the
defining bead on the a-flush abacus, and the number below a right step to be the defining bead on the
b-flush abacus. (See Figure 3.) �
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−23 −22 −21 −20 −19 −18 −17 −16

−15 −14 −13 −12 −11 −10 −9 −8

−7 −6 −5 −4 −3 −2 −1 0

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
3 −5 −13 −21 −29 −37 −45 −53 −61 −69 −77 −85 −93

16 8 0 −8 −16 −24 −32 −40 −48 −56 −64 −72 −80

29 21 13 5 −3 −11 −19 −27 −35 −43 −51 −59 −67

42 34 26 18 10 2 −6 −14 −22 −30 −38 −46 −54

55 47 39 31 23 15 7 −1 −9 −17 −25 −33 −41

68 60 52 44 36 28 20 12 4 −4 −12 −20 −28

81 73 65 57 49 41 33 25 17 9 1 −7 −15

94 86 78 70 62 54 46 38 30 22 14 6 −2

FIGURE 4. The placement of integers in boxes (i, j) for 8-flush and 13-flush abaci for
0 ≤ i ≤ 7, 0 ≤ j ≤ 12. The flush conditions force −6 to be a bead and 7 to be a gap.
Because of the symmetry, a lattice path is completely defined by the portion from (0, 0)
to (4, 6). An example of an antisymmetric abacus a its corresponding lattice path is also
shown.

Proposition 4.6. The following is a bijection:

L :

{
antisymmetric a-flush and
b-flush abacus diagrams

}
←→

{
N -E lattice paths

(0, 0)→ (
⌊
b
2

⌋
,
⌊
a
2

⌋
)

}
.

Proof. When an antisymmetric abacus is a-flush and b-flush, this gives conditions on the possible sets of
beads and gaps. For one, when a (or b) is odd, then there must be a bead in position 1−a

2 (or 1−b
2 ) and a

gap in position a+1
2 (or b+1

2 ) since they are an antisymmetric pair and in the same runner.
When a and b are of opposite parity, then there must be a bead in position 1−b−a

2 and a gap in position
1+b+a

2 because they are an antisymmetric pair and the inverse assignment would create an impossibility
for position 1+b−a

2 in terms of being both a-flush and b-flush.
Organize the integers into a square lattice depending on the parity of a. When a is even, place the

integer 1+b−a
2 − ai + bj in the box with corners (i, j) and (i + 1, j + 1). When a is odd, instead insert

1+2b−a
2 − ai+ bj. (See Figure 4.)
As in type A case, the rows correspond to the abacus with a runners and the columns correspond

to the abacus with b runners. The conditions discussed above imply that a a-flush and b-flush abacus
corresponds to a N -E lattice path from (0, 0) to (b, a) which is symmetric about the point

(
b
2 ,

a
2

)
that

separates the gaps (to the left and above) from the beads (to the right and below). The inherent symmetry
implies that we need only consider the lattice path from (0, 0) to

(⌊
b
2

⌋
,
⌊
a
2

⌋)
. �

Remark. The diagonal hook lengths discussed by Ford, Mai, and Sze can be recovered by analyzing the
set of positive beads. An antisymmetric bead-gap pair for a positive bead x corresponds to a diagonal
hook of length 2x−1. Indeed, we recover the numbers in the lattice of Ford, Mai, and Sze after matching
their indexing conventions and applying the transformation f(x) = 2x− 1 to the numbers in our lattice.

Proof of Theorem 4.4. In type A, the bijection of Anderson [And02, Proposition 1] specifies to a bijec-
tion

L :

{
n-flush and (mn+ 1)-flush

abacus diagrams

}
←→

 N -E lattice paths
(0, 0)→ (n, n)

on or above y = x

 ,
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where the abacus diagram is normalized and drawn on runners 0 through n− 1. In type C, the bijection
in Proposition 4.6 restricts to the bijection

L :

{
antisymmetric 2n-flush and

(2n+ 1)-flush abacus diagrams

}
←→

{
N -E lattice paths
(0, 0)→ (n, n)

}
.

We will show that maj(λ) equals maj(L) in type A and 2maj(L) in type C where maj(L) is the usual
major statistic

maj(L) =
∑

i:(Li,Li+1)=(E,N)

i

for lattice paths. The desired result follows from a classical result of MacMahon; see for example [Hag08,
Chapter 1].

We must determine the positions of East steps followed by North steps in L. Since the position of the
lowest bead in runner i corresponds to the i-th North step, an East step before the i-th North step occurs
if the level of the lowest bead in runner i is less than or equal to the lowest bead in runner i − 1, which
is exactly the condition that the sequence x has a descent in position i.

Now we must determine the step along L where this North step occurs to see what its contribution
to maj(λ) should be. A North step always corresponds to changing runners in the abacus. An East step
corresponds to walking up the levels in the runner. So if the weak descent of x occurs in position i with a
bead on level xi, then this corresponds to having traversed i North steps (in type C, (i− 1) North steps)
and (i− xi) East steps, which contributes 2i− xi to maj(λ) (in type C, 2(2i− xi − 1)). The sum over
all descents gives Equations (4.1) and (4.2). �

5. FURTHER QUESTIONS

In this section, we present some directions for future research.

Question 5.1. The dominant regions of the Shi arrangement form a set of representatives for certain
orbits inside the set of all (not necessarily dominant) Shi regions. For example, in type A one can label
the regions of the Shi arrangement by a Dyck path (representing some dominant Shi region) together with
a permutation that is a minimal length coset representative for a quotient that is defined by the choice of
Dyck path.

If we instead use a simultaneous core to represent the dominant Shi region in type A or type C,
what additional data would we need to add as a decoration in order to parameterize the full set of (not
necessarily dominant) Shi regions? Recent work of Mészáros [Més13] contains relevant combinatorics
for type C̃.

Question 5.2. From the perspective of abacus diagrams, the simultaneous cores we have studied are
defined entirely in terms of conditions that have the form “If a bead exists at position i then a bead exists
at position f(i),” where f(i) is the function i − j with j constant. As we have seen, these “convexity”
conditions conspire to produce a finite set of abacus diagrams when j is relatively prime to n.

It is natural to consider more general types of functions f(i). For example, when defining abacus
diagrams that correspond to dominant regions of the type B̃ or type D̃ Shi arrangements, we must
impose distinct flush conditions depending on the column containing i in the abacus.

Which functions f produce finite sets of abaci? Is it possible to enumerate these sets directly from the
abacus diagram and the conditions imposed by f? Are there other natural classes of partitions that are
defined in terms of convex conditions on abaci?

Question 5.3. Our argument that the dominant regions of the m-Shi arrangement correspond to simul-
taneous core partitions does not generalize to types B̃ and D̃ because the condition for si to be a right
descent on the abacus analogous to Lemma 3.2 involves non-adjacent columns.
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Starting from the fact that that the set of dominant alcoves in these types correspond to even (2n)-core
partitions, it would be natural to look for a simple criterion on these partitions that selects the subset of
minimal or bounded m-Shi alcoves. The conditions of being (2mn± 1)-core do not produce the correct
subsets.
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