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Abstract. An pa, bq-Dyck path P is a lattice path from p0, 0q to pb, aq that stays above the line
y “ a

b
x. The zeta map is a curious rule that maps the set of pa, bq-Dyck paths onto itself; it

is conjecturally bijective, and we provide progress towards proof of bijectivity in this paper, by
showing that knowing ζpP q and ζpP c

q is enough to recover P .
Our method begets an area-preserving involution χ on the set of pa, bq-Dyck paths when ζ is a

bijection, as well as a new method for calculating ζ´1 on classical Dyck paths. For certain nice
pa, bq-Dyck paths we give an explicit formula for ζ´1 and χ and for additional pa, bq-Dyck paths we
discuss how to compute ζ´1 and χ inductively.

We also explore Armstrong’s skew length statistic and present two new combinatorial methods
for calculating the zeta map involving lasers and interval intersections. We conclude with two
possible routes to a proof that ζ is a bijection. Notably, we provide a combinatorial statistic δ
that can be used to recursively compute ζ´1. We show that δ is computable from ζpP q in the
Fuss-Catalan case and provide evidence that δ may be computable from ζpP q in general.

1. Introduction

Let a and b be relatively prime positive integers and let Da,b be the set of pa, bq-Dyck paths,
lattice paths P from p0, 0q to pb, aq staying above the line y “ a

bx. These paths are often called
rational Dyck paths and they generalize the classical and well-studied Dyck paths.

We study a remarkable automorphism ζ on rational Dyck paths which has received considerable
attention lately; this “zeta map” generalizes the map on standard Dyck paths discovered by Haiman
in study of diagonal harmonics and q, t-Catalan numbers [Hag08]. Combinatorial definitions of q, t-
statistics for classical Dyck paths were famously difficult to find, but were nearly simultaneously
discovered by Haglund and Haiman. Interestingly, they discovered two different pairs of statistics:
Haiman found area and dinv shortly after Haglund discovered bounce and area statistics. The zeta
map was then uncovered, which satisfies bouncepζpP qq “ areapP q and areapζpP qq “ dinvpP q.

Many details about the zeta map have been gathered and unified in a comprehensive article
by Armstrong, Loehr, and Warrington [ALW14b], including progress on proving its bijectivity in
certain cases such as pa, am˘1q-Dyck paths [Loe05, GM14] (which is associated to the Fuss-Catalan
numbers). The zeta map was shown to be a bijection in these special cases by way of a “bounce
path” by which zeta inverse could be computed. However, constructing such a bounce path for
the general pa, bq case remains elusive. Armstrong, Loehr, and Warrington showed that there is
a much larger family of sweep maps (for which the zeta map is a special case) which extensive
computational exploration suggests are also bijective. A construct of theirs upon which we have
relied heavily is the notion of the levels of a lattice path.

Recent progress on the zeta map has been made in the case when a “ 3 by Kaliszewski and
Li [KL14] and a Type C analog by Sulzgruber and Thiel [ST14]. Rational Dyck paths also are
intimately entwined in the study of rational parking functions and MacDonald polynomials, with
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recent work by Gorsky, Mazin, and Vazirani [GMV14] and when a and b are not relatively prime
by Bergeron, Garsia, Levin, and Xin [BGLX14].

Our goal is to explore the following conjecture:

Conjecture 1.1. Let a and b be relatively prime positive integers. The zeta map ζ : Da,b Ñ Da,b

is a bijection.

Our perspective is that there are in fact two maps, the zeta map and the eta map, which
jointly contain enough information to recover the original path. In Section 6.1, we provide a
straightforward algorithm for recovering P from the combined data of Q “ ζpP q and R “ ηpP q.
What we find interesting is that the information contained solely in ζpP q does not seem to be
enough to reconstruct P directly. Our argument does not give an explicit construction of ζ´1pQq,
nor do we construct a bounce path.

Our eta map is based on a natural notion of conjugation on rational Dyck paths explored in
Section 4 that arises from Anderson’s bijection [And02] between pa, bq-Dyck paths and simultaneous
pa, bq-core partitions, which in turn are related to many more combinatorial interpretations. (See
[AHJ14] for additional background.) Our map η is defined by ηpP q “ ζpP cq, and in most cases
ζpP q ‰ ηpP q. Section 5 is devoted to presenting the algorithms for calculating the zeta map and
the eta map in multiple fashions. In particular, we present two new methods involving lasers and
interval intersections.

Meanwhile, ζ and η combine to induce a new area-preserving involution χ on the set of Dyck
paths defined in Section 6.2 by

χpQq :“ ηpζ´1pQqq “ ζpζ´1pQqcq.

In Section 7, we prove that in the classical Catalan case, this conjugate-area map χ is the map that
reverses the Dyck path. Applying our inverse algorithm presents a new construction of the inverse
of the zeta map on a Dyck path. However, we have no explicit description of χpQq from Q in the
general pa, bq-case. Indeed, a concrete construction of χpQq from Q could be used to construct an
explicit inverse for the zeta map.

In Section 8, we show that when a rational Dyck path Q visits the lattice point having level
equal to 1, ζ´1pQq has a nice decomposition as does its image under the conjugate-area map χ.
These observations allows us to explicitly find χ (and therefore ζ´1) of any path that has valleys
exactly on levels equal to t1, . . . , ku for k ă a in Theorem 8.3. We have also constructed χpQq and
ζ´1pQq for paths that bound left-adjusted or up-adjusted partitions in Proposition 6.11.

Section 9 presents two promising avenues for proving Conjecture 1.1. Section 9.1 discusses a
key permutation γpP q that serves to fully encode P , ζpP q, and ηpP q by way of its exceedences.
Section 9.2 investigates the poset of rational Dyck paths ordered by when one path is weakly below
the other, motivating a new statistic δpP q that appears to be fruitful for recursively computing ζ´1

from evidence gathered by computer learning algorithms. Indeed, in the remainder of Section 9,
we use δpP q to construct the initial part of a rational bounce path and to give a new algorithm
that computes ζ´1 for pa, am` 1q-Dyck paths. This provides an alternate proof of the bijectivity
of the zeta map on pa, am` 1q-Dyck paths to that of Loehr in [Loe05].

One of our primary motivations was the study of conjectured statistics for the q, t-enumeration of
pa, bq-Dyck paths. Section 2 sets the stage by introducing key combinatorial concepts and statistics
associated to pa, bq-Dyck paths. In Section 3 we investigate the skew length statistic slpP q, originally
defined in the context of pa, bq-cores in [AHJ14]. The original definition of skew length seems to
depend on the ordering of a and b; we show that skew length is in fact independent of this choice.
The main tools we develop involve a row length filling of the boxes under the pa, bq-Dyck path
P and above the main diagonal, along with the idea of skew inversions and flip skew inversions.
Section 4 shows that skew length is preserved under conjugation.

Enjoy reading and we’d love to hear your feedback!



COMBINATORICS OF THE ZETA MAP ON RATIONAL DYCK PATHS 3

3

11 6

14

1

9 4

7 2

0

8

16

24 19

27 22 17 12

20 15 10 5 0

22 17 1227

19

-5 -10 -15 -20 -25 -30 -35 -40

-2 -7 -12 -17 -22 -27 -32

-4 -9 -14 -19 -24

-1 -6 -11 -16

-3 -8

Figure 1. (Left) A lattice path P when a “ 5 and b “ 8. The hook filling is given
by the numbers in the center of the boxes. The boxes above the path show that the
partition bounded by P is p4, 1q.
(Right) The levels of the lattice points along the path.

2. Background and Notation

Definition 2.1. An pa, bq-lattice path P is a lattice path in Z2 consisting of north and east steps
starting from the origin and ending at the point pb, aq.

We call P an pa, bq-Dyck path if P remains (weakly) above the diagonal line connecting the origin
to pb, aq. Equivalently, the lattice points px, yq along P satisfy ax ď by. We draw pa, bq-Dyck paths
in an aˆ b grid, where the lower left corner is the origin.

We denote the full collection of pa, bq-Dyck paths by Da,b, or simply D if there is no confusion
about the values of a and b.

We use the English notation for Young diagrams, drawing the largest row at the top. The hook
length of a box B in the Young diagram of a partition is the number of boxes in the hook of boxes
directly below or directly to the right of B, including the box B itself. An a-core partition (or
simply a-core) is a partition for which its Young diagram has no boxes with hook length equal to a.
Similarly, a simultaneous pa, bq-core partition (or pa, bq-core for short) has no hooks equal to a or b.

Anderson proved that when a and b are relatively prime there are finitely many pa, bq-cores
[And02] by finding a bijection with the set of pa, bq-Dyck paths; these are counted by the formula

1

a` b

ˆ

a` b

a

˙

.

This formula seems to have been discovered at various times; the earliest reference we know of
is [DM47] in 1947. In 1954, Bizley considered the general case of rectangular Dyck paths of which
this formula is a special case [Biz54].

Bizley’s counting method starts from the full set of lattice paths from p0, 0q to pb, aq, and considers
the orbit of the cyclic group Ca`b acting by cyclic shifts on paths. In the case where a and b are
relatively prime, there is a unique Dyck path in each such orbit.

Example 2.2. Let N and E represent a north step and an east step, respectively. Throughout
this paper, we will use as our running example the p5, 8q-Dyck path

P “ NNNENEEENEEEE,

shown in Figure 1.
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Figure 2. Anderson’s bijection gives a correspondence between pa, bq-Dyck paths
and pa, bq-core partitions. Corresponding to P “ NNNENEEENEEEE is the
p5, 8q-core p6, 4, 3, 2, 2, 1, 1, 1, 1q.

2.1. Dictionary of notation.
We keep track of numerous bits of data associated to an pa, bq-Dyck path P .

(1) General constructions:
‚ The hook filling of the boxes in the square lattice is obtained by filling the box with

lower-right lattice point pb, 0q with the number ´ab and increasing by a for every one
box west and increasing by b for every one box north. A box is above the main diagonal
if and only if the corresponding hook is positive. (See Figure 1.)

‚ The positive hooks of P are the numbers in the hook filling below the path but greater
than zero. (Elsewhere these have been called beta numbers or bead numbers.)

‚ We denote by cpP q the pa, bq-core corresponding to P under Anderson’s bijection. The
hook lengths of the boxes in the first column of cpP q, its leading hooks, are precisely
the positive hooks of P . An example of Anderson’s bijection is illustrated in Figure 2.

‚ The row length filling of P are numbers placed in the boxes under P . They correspond
to the number of boxes in the row of cpP q with the given hook. This will be developed
in Section 3.2. (See Figure 5.)

‚ The partition bounded by P is the partition whose Young diagram is the collection of
boxes above the path P .

(2) Combinatorial statistics:
‚ The area of P , denoted areapP q is the number of positive hooks of P . Equivalently,

this is the number of rows in cpP q.
‚ The rank of P , denoted rkpP q is the number of rows in the partition bounded by P .
‚ The skew length of P , denoted slpP q is a statistic that we discuss in detail in Section 3.

(3) Sets and sequences of numbers associated to P :
‚ The levels of P are labels associated to the lattice points of P defined by Armstrong,

Loehr, and Warrington in [ALW14a, ALW14b]. Assign level 0 to p0, 0q and label the
other lattice points of P by adding b after each north step and subtracting a after each
east step. Equivalently, this is the value of the hook filling in the box to the northwest
of the lattice point. Note that the label of the northeast-most lattice point pb, aq is
once again 0` a ¨ b´ a ¨ b “ 0.

‚ The path P has two reading words obtained by reading the levels in order. The reading
word of P , denoted LpP q (for ‘levels’), is obtained by reading the levels that occur along
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the path from southwest to northeast, excluding the final 0. (One can imagine assigning
to each north and east step of the path the level of the step’s initial lattice point.)
The reverse reading word, denoted MpP q, is obtained by reading from northeast to
southwest, excluding the final 0. (One can imagine P as a path from pb, aq to p0, 0q
consisting of west and south steps, once again assigning to each step the level of its
initial lattice point.)
Reading along P in Figure 1 shows that

LpP q “ p0, 8, 16, 24, 19, 27, 22, 17, 12, 20, 15, 10, 5q

and

MpP q “ p0, 5, 10, 15, 20, 12, 17, 22, 27, 19, 24, 16, 8q.

When a and b are relatively prime, no value occurs more than once in LpP q or MpP q.
‚ The set of levels of P is partitioned into the set of north levels NpP q and east levels
EpP q, where when reading from southwest to northeast, levels of lattice points starting
north steps of P are in NpP q and levels of lattice points starting east steps of P are
in EpP q. We order these levels in decreasing order. In our running example, the north
levels of P are

NpP q “ t19, 16, 12, 8, 0u,

and the east levels of P are

EpP q “ t27, 24, 22, 20, 17, 15, 10, 5u.

(4) Permutations associated to P : Throughout the paper we use square brackets to write
permutations in one-line notation, and round parentheses for permutations in cycle notation.

‚ The reading permutation of P is a permutation σ in Sa`b that encodes the relative order
of the levels recorded in LpP q. The reverse reading permutation of P , denoted τpP q,
encodes the relative order of the values in MpP q. In our running example, the one-line
notation for σpP q and τpP q are

σpP q “ r1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2s

and

τpP q “ r1, 2, 4, 6, 10, 5, 8, 11, 13, 9, 12, 7, 3s.

‚ Let γpP q be the permutation in Sa`b that when written in cycle notation is equivalent
to σpP q written in one-line notation. In our running example P we have

γpP q “ p1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2q

“ r3, 1, 7, 2, 10, 4, 12, 5, 13, 6, 8, 9, 11s.

Remark 2.3. The path P can be recovered knowing only σpP q (or τpP q or γpP q). The east
steps of P correspond exactly to the right (cyclic) descents: of σ; whereas, the north steps of P
correspond to the right (cyclic) ascents of σ.

3. Skew length

In [AHJ14] the skew length statistic is proposed as a q-statistic for pa, bq-Dyck paths and a
related construction is investigated in [ALW14a, Section 4]. In this section, we present the original
definition of skew length on cores and two equivalent interpretations on pa, bq-Dyck paths using
length fillings and skew inversions. We show that these interpretations are indeed equivalent to
the original definition and, as a consequence, we prove that skew length is independent of the

:A descent of a permutation occurs when σpiq ą σpi ` 1q. A cyclic descent is defined in the same way, but
considering the indices modulo a` b, allowing a descent in the last position of σ.
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L(x)� L(x� b)
| {z }

h� a

h

a

l(h)� l(h� a)

Figure 3. The number of a-boundary boxes in the row of κ corresponding to a
leading hook h is lphq ´ lph´ aq.

ordering of a and b. Further interpretations of skew length are presented in terms of the zeta map
in Section 5.

3.1. Skew length on cores and polynomial motivation.
We begin with an observation on ordinary core partitions before discussing simultaneous core

partitions.

Definition 3.1 ([AHJ14, Definition 2.7]). Let κ be an a-core partition. Consider the hook lengths
of the boxes in the first column of κ. Find the largest hook length of each residue modulo a. The
a-rows of κ are the rows of κ corresponding to these hook lengths. The a-boundary of κ consists
of all boxes in its Young diagram with hook length less than a.

Proposition 3.2. Let κ be an a-core partition. The number of boxes in the a-rows of κ equals the
number of boxes in the a-boundary of κ.

Proof. Let lphq be the number of boxes in the row of κ with leading hook h.
We first observe that if h ą a is a leading hook of κ, then h´ a is also a leading hook of κ. For

this, decompose h into two hooks of lengths h ´ a and a as illustrated in Figure 3, such that the
boxes in the row with leading hook h that are intersected by the hook a are exactly the boxes in
the a-boundary in that row. This guarantees that the right-end box of the hook h´ a is in κ, and
therefore that h´ a is also a leading hook.

Now, the number of a-boundary boxes in the row of κ corresponding to h is lphq ´ lph ´ aq.
Summing over all rows gives the number of a-boundary boxes; telescoping over residues modulo a
gives the number of boxes in the a-rows of κ. �

Corollary 3.3. The number of boxes in the a-rows of κ equals the number of boxes in the a-rows
of κc

Remark 3.4. For readers familiar with the abacus diagram interpretation, hook lengths correspond
to beads on the abacus; the a-rows correspond to the largest bead on each runner of the a-abacus.
Proposition 3.2 gives a way to count the number of boxes in the a-boundary of an a-core by adding
the number of gaps that appear on the abacus before each of these largest beads.

Definition 3.5 ([AHJ14, Definition 2.7]). Let κ be an pa, bq-core partition. The skew length of κ,
denoted slpκq, is the number of boxes simultaneously located in the a-rows and the b-boundary of κ.
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Figure 4. (Left) The 8-boundary boxes of our favorite p5, 8q-core κ are shaded;
those in the 5-rows of κ are darker. (Right) The 5-boundary boxes of κ are shaded;
those in the 8-rows of κ are darker. Surprisingly, the number of darkly shaded boxes
on the left 4` 3` 2` 1 “ 10 is equal to the number of darkly shaded boxes on the
right 3` 2` 2` 1` 1` 1 “ 10. (See Corollary 3.18.)

Example 3.6. The core partition shown in Figure 4 is the p5, 8q-core κ “ cpP q corresponding to
the path P in our running example from Figures 1 and 2.

On the left, the 5-rows of κ are the rows with leading hook lengths 14, 11, 7, and 3. The darkly
shaded boxes are those boxes in the 5-rows with hook length less than 8. The skew length is equal
to 4` 3` 2` 1 “ 10.

On the right, we compute of the skew length of κ when considered as an p8, 5q-core. The 8-rows
of κ are the rows with leading hook lengths 14, 11, 9, 7, 4, and 2. The shaded boxes are those boxes
in the 8-rows with hook length less than 5. The skew length is equal to 3` 2` 2` 1` 1` 1 “ 10.

We will see in Corollary 3.18 that it is not a coincidence that these two numbers are the same.
The number of boxes in the 8-boundary (shaded boxes, left) equals the number of boxes in the 8-

rows (marked rows, right) and the number of boxes in the 5-boundary (shaded boxes, right) equals
the number of boxes in the 5-rows (marked rows, left), as proved in general in Proposition 3.2.

The skew length statistic was found by Armstrong; he conjectures it as a key statistic involved
in the q- and q, t-enumeration of pa, bq-cores (or pa, bq-Dyck paths). Recall that the rank rkpκq of
an pa, bq-core κ is the number of rows in its corresponding Young diagram.

Conjecture 3.7. [AHJ14, Conjecture 2.8] Let a and b relatively prime positive integers. The
expression

fa,bpqq “
1

ra` bsq

„

a` b
a



q

is equal to the polynomial

ga,bpqq “
ÿ

κ

qslpκq`rkpκq,

where the sum is over all pa, bq-cores κ.

Haiman [Hai94, Proposition 2.5.2] proved that fa,bpqq is a polynomial if and only if a and b are
relatively prime, but there is no simple proof that fa,bpqq has non-negative coefficients. ([GG12,
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Section 1.12] provides a proof involving representation theory of rational Cherednik algebras.)
Conjecture 3.7 would provide such a proof.

Proposition 3.8. [Hai94, GG12] The expression

fa,bpqq “
1

ra` bsq

„

a` b
a



q

is a polynomial if and only if gcdpa, bq “ 1. Furthermore, when a and b are relatively prime, the
resulting polynomial has integer coefficients.

Define the co-skew length of an pa, bq-core κ as

sl1pκq :“
pa´ 1qpb´ 1q

2
´ slpκq.

Armstrong conjectures that rank and co-skew length give a q, t-enumeration of the pa, bq-cores,
subject to the following symmetry:

Conjecture 3.9. [AHJ14, Conjecture 2.9] The following q, t-polynomials are equal:

ÿ

qrkpκqtsl
1pκq “

ÿ

qsl
1pκqtrkpκq

where the sum is over all pa, bq-cores κ.

These q, t-polynomials are called the rational q, t-Catalan numbers.

Remark 3.10. As an aside, we have observed that fa,bpqq is particularly resilient to deformation.
In [SS10], a Fibonacci ‘deformation’ of the binomial coefficients is introduced, alongside combina-
torial interpretations thereof. In this scheme, each integer k is replaced by a Fibonacci number
Fk, with the Fibonacci numbers initialized as F0 “ 0 and F1 “ 1. The resulting ‘Fibonomial’
coefficients

"

Fa`b
Fa

*

“
Fa`bFa`b´1 ¨ ¨ ¨F1

FaFa´1 ¨ ¨ ¨F1FbFb´1 ¨ ¨ ¨F1

are shown by Sagan and Savage to be integers. Define the pa, bq-Fibolan as:

Fa,b “
1

Fa`b

"

Fa`b
Fa

*

.

We can also apply a double-deformation, and speak of q-Fibonacci numbers. Here we replace each
Fibonacci number Fk with the q-polynomial rFksq “ 1 ` q ` ¨ ¨ ¨ ` qFk´1. Then we may define
the q-pa, bq-Fibolans as:

Fa,bpqq “
1

rFa`bsq

"

Fa`b
Fa

*

q

.

Somewhat amazingly, the q-pa, bq-Fibolans are still polynomials in q. The Fibonacci numbers
admit a Euclidean algorithm; in particular, we have that gcdpFa, Fbq “ Fgcdpa,bq. The proof of
polynomiality in Proposition 3.8 can then be adapted exactly to the study of the q-pa, bq-Fibolans.
In this case, the proof gives us that the q-pa, bq-Fibolan is a polynomial if and only if gcdpFa, Fbq “
Fgcdpa,bq “ 1, which occurs if and only if gcdpa, bq “ 1 or 2. It would be interesting to have a
combinatorial interpretation of these q-deformed pa, bq-Fibolan numbers. This connection will be
explored in more detail in [ABCL15].
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Figure 5. The row length filling of boxes below the path P is given in red in the
upper left corner. The values correspond to the length of the rows of cpP q in Figure 2.

3.2. Skew length on Dyck paths via the row length filling.
We now provide a new method to calculate the skew length of an pa, bq-Dyck path P which

uses a row length filling of the boxes below P . Our method coincides with the skew length statistic
proposed by Armstrong for pa, bq-cores. As a consequence, we show that skew length of an pa, bq-core
is independent of the ordering of a and b.

We provide two equivalent definitions of the row length filling.

Definition 3.11. Let P be an pa, bq-Dyck path. The row length filling of P is an assignment of
numbers to each box below the path P .

For a box B with positive hook filling h, define the row length of B to be the length of the row
in cpP q with leading hook h. Alternatively, define the row length of B to be h ´ ph, where ph is
the number of positive entries in the hook filling strictly less than h.

For a box B with non-positive hook filling h, define the row length of B to be zero.
For any hook h in the hook filling of P , we denote by lphq the corresponding value of the row

length filling of P .

Figure 5 shows in red in the upper left corner the row length of the boxes corresponding to the
positive hooks of P .

Lemma 3.12. The two definitions of row length filling in Definition 3.11 are equivalent.

Proof. When ordered in increasing order, the entries in the hook filling of P correspond to the hook
lengths of the boxes in the first column of cpP q from shortest to longest. Suppose the first box of
the ith shortest row has hook length h. Then the length of the ith shortest row is h´pi´1q, which
is exactly the corresponding entry in the row length filling. �

Remark 3.13. For readers familiar with the abacus diagram interpretation, the row length filling
associates to each bead on the abacus the number of gaps that appear on the abacus before it.

The row length filling is very useful for reading off common core statistics from the Dyck path.
For example, we can immediately see that:

Corollary 3.14. The sum of the entries of the row length filling of P is equal to the number of
boxes of the core cpP q.

Furthermore, because the a-rows of cpP q correspond to the westmost boxes under P and the
b-rows of cpP q correspond to the northmost boxes under P , the number of boxes in cpP q with
hook length less than a or less than b can be determined from the row length filling as a direct
consequence of Proposition 3.2.

Corollary 3.15. The number of boxes in the a-boundary of an pa, bq-core cpP q is equal to the sum
of the row length fillings of the westmost boxes under P . Likewise, the number of boxes in the
b-boundary of cpP q is equal to the sum of the row length fillings of the northmost boxes under P .
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In the same vein, the skew length of P can also be easily computed, as follows:

Theorem 3.16. The skew length of an pa, bq-core cpP q may be computed from the length filling
of P by adding all lengths at outer corners and subtracting all lengths at inner corners.

Proof. By the argument in the proof of Proposition 3.2, we see that when h is a positive hook of
an pa, bq-Dyck path P (so that h ´ a is the hook of the box directly east of the box with hook h
and h´ b is the hook of the box directly south of the box with hook h), then

(i) The number of a-boundary boxes in the row of cpP q corresponding to h is lphq ´ lph´ aq.
(ii) The number of b-boundary boxes in the row of cpP q corresponding to h is lphq ´ lph´ bq.

By restricting to the a-rows or b-rows, we see that the skew length of cpP q is given by:

(3.1)
ÿ

lphq ´ lph´ bq,

where the sum is over all westmost boxes under P , or alternatively the skew length of cpP q is given
by:

(3.2)
ÿ

lphq ´ lph´ aq,

where the sum is over all northmost boxes under P . When one westmost box under P is directly
north of another, Formula (3.1) telescopes. After cancelling terms, we are left with the lengths at
outer corners of P minus the lengths at inner corners of P . An equivalent argument can be made
from Formula (3.2). �

Example 3.17. In Figure 5, we see that the sum of the row length fillings is 21, which is the number
of boxes of cpP q. Adding the row lengths of the westmost boxes under P gives 2`6`4`1`0 “ 13
boxes in the 5-boundary of cpP q, while adding the row lengths of the northmost boxes under P
gives 4` 6` 3` 1` 2` 1` 0` 0 “ 17 boxes in the 8-boundary of cpP q, as expected from Figure 4.
Our path P has three outer corners with row lengths 2, 6, and 4 and two inner corners with row
lengths 2 and 0. The skew length of our path is then

slpP q “ p2` 6` 4q ´ p2` 0q “ 10.

When computing skew length directly from the core, it is not obvious that the number of boxes
in a-rows and the b-boundary should be equal to the number of boxes in b-rows and the a-boundary
(see Figure 4). But the method of computing the skew length given by Theorem 3.16 is independent
of the ordering of a and b: Switching a and b flips the rectangle to a bˆ a rectangle in which outer
corners are still outer corners, inner corners are still inner corners, and the hook filling and row
length filling are otherwise unaffected.

Corollary 3.18. The skew length of an pa, bq-core κ is independent of the ordering of a and b.

3.3. Skew length via skew inversions.
This section presents another interpretation of the skew length of an pa, bq-Dyck path P in terms

of the number of its skew inversions or the number of its flip skew inversions.
Recall that the north levels of P are the levels NpP q “ tn1, . . . , nau of the initial lattice points

of the north steps in the path, and that the east levels of P are the levels EpP q “ te1, . . . , ebu of
the initial lattice points of the east steps.

Definition 3.19. A skew inversion of P is a pair of indices pi, jq such that ni ą ej . A flip skew
inversion of P is a pair of indices pi, jq with ni ` b ă ej ´ a.

Theorem 3.20. Let P be an pa, bq-Dyck path. The skew length of P equals the number of skew
inversions of P , which is equal to the number of flip skew inversions of P .

The key to the proof of Theorem 3.20 is recognizing the relationship between westmost boxes
under P and north levels in NpP q and the relationship between northmost boxes under P and east
levels in EpP q.
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Figure 6. When h is the hook filling of a westmost box under P , the associated
north level is nh “ h ` a. When h is the hook filling of a northmost box under P ,
the associated east level is eh “ h` a` b.

Remark 3.21. Figure 6 shows that when h is the hook filling of a westmost box under P , then the
associated north level nh (corresponding to the lattice point at its southwest corner) is h`a. When
h is the hook filling of a northmost box under P , then the associated east level eh (corresponding
to the lattice point at its northwest corner) is h` a` b.

Lemma 3.22. Let h be the hook filling of a westmost box under an pa, bq-Dyck path P . The length
difference lphq ´ lph ´ bq is equal to the number of skew inversions involving the associated north
level nh, which equals the number of b-boundary boxes in the a-row corresponding to h.

Proof. Recall that lphq “ h´ ph, where ph is the number of positive hooks in the hook filling of P
less than h. Then:

lphq ´ lph´ bq “ h´ ph ´ ph´ bq ` ph´b

“ b´ pph ´ ph´bq

“ b´#tg | h´ b ď g ă hu.

Each box with hook filling g satisfying the inequalities h´ b ď g ă h is in a distinct column of
the diagram of P . If two were in the same column, then the difference of their hooks would be a
multiple of b, so that both could not satisfy the inequality. As a result, we may add a multiple of b
to each g satisfying the inequalities to obtain a unique northmost box under P with hook filling g
satisfying h´b ď g. Conversely, for every northmost box under P with hook filling g satisfying this
inequality there is a unique box with hook filling g in the same column satisfying h ´ b ď g ă h.
Therefore,

lphq ´ lph´ bq “ b´#tg | h´ b ď gu

“ #tg | h´ b ą gu.

By Remark 3.21, this is equivalent to lphq ´ lph ´ bq “ #tej | nh ą eju, as desired. The last
clause of the statement of the lemma is given in the proof of Theorem 3.16. �

Similar arguments prove the following.

Lemma 3.23. Let h be the hook filling of a northmost box under an pa, bq-Dyck path P . The length
difference lphq´ lph´ aq is equal to the number of flip skew inversions involving the associated east
level eh, which equals the number of a-boundary boxes in the b-row corresponding to h.

Theorem 3.20 now follows directly from Definition 3.5 by summing over all westmost boxes in
Lemma 3.22 and all northmost boxes in Lemma 3.23.

Example 3.24. In our running example, the north levels are N “ t19, 16, 12, 8, 0u and the east
levels are E “ t27, 24, 22, 20, 17, 15, 10, 5u. There are 10 skew inversions because there are 4 east
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Figure 7. The conjugate map on pa, bq-cores.

levels less than n1 “ 19, 3 east levels less than n2 “ 16, 2 east levels less than n3 “ 12, 1 east levels
less than n4 “ 8, and 0 east levels less than n5 “ 0. The total number of skew inversions is then
4`3`2`1`0 “ 10. These numbers correspond to the number of b-boundary boxes in the a-rows
of the core cpP q in Figure 4.

To calculate the flip skew inversions, consider the sets N ` b “ t27, 24, 20, 16, 8u and E ´ a “
t22, 19, 17, 15, 12, 10, 5, 0u. There are 10 flip skew inversions because there are 3 elements of the
form ni ` b less than e1 ´ a “ 22, there are 2 less than e2 ´ a “ 19, 2 less than e3 ´ a “ 17, 1 less
than e4´ a “ 15, 1 less than e5´ a “ 12, 1 less than e6´ a “ 10, 0 less than e7´ a “ 5, and 0 less
than e8´ a “ 0. The total number of flip skew inversions is then 3` 2` 2` 1` 1` 1` 0` 0 “ 10.
These numbers correspond to the number of a-boundary boxes in the b-rows of the of the core cpP q.

Remark 3.25. Skew inversions in an pa, bq-Dyck path arise from pairs of north levels and east
levels where ni ą ej . Note that ni` b is the level of the terminal lattice point of the corresponding
north step (instead of initial lattice point), while ej ´ a is the level of the terminal lattice point
of the corresponding east step. So flip skew inversions are best understood by a reverse reading of
P as a sequence of west and south steps, counting the pairs where the south level is less than the
west level. Alternatively, flip skew inversions of P correspond to skew inversions of P when P is
reflected (flipped) to be a pb, aq-Dyck path.

4. The conjugate map

For any partition κ, its conjugate partition κc is obtained by reflecting along its main diagonal.
(See Figure 7.) Since hook lengths are preserved under this reflection, when κ is an pa, bq-core,
so is κc. When a and b are relatively prime, there is a natural conjugate map on pa, bq-Dyck
paths P . Apply cyclic shifts to the path P until we encounter a path strictly below the diagonal,
the conjugate path P c is the result of rotating this path 180˝. (See Figure 8.) The first main
result of this section (Theorem 4.1) shows that these conjugations are equivalent under Anderson’s
bijection, and the second (Theorem 4.5) shows that conjugation preserves skew length. These two
results were simultaneously found in independent work by Xin in [Xin15b].

Theorem 4.1. Conjugation on pa, bq-cores coincides with conjugation on pa, bq-Dyck paths via
Anderson’s bijection:

cpP qc “ cpP cq.
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Figure 8. The conjugate map on pa, bq-Dyck paths.
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Figure 9. Illustration of the proof of Lemmas 4.2 and 4.3

This follows directly by showing the equivalence between the leading hooks of cpP qc and the
positive hooks of P c. A result of Olsson gives the leading hooks of cpP qc; we include a proof for
completeness.

Lemma 4.2. [Ols93, Lemma 2.2] Let κ be any partition with leading hooks given by the set H, with
m “ maxpHq. The conjugate partition κc has leading hooks given by tm´n : n P t0, 1, . . . ,muzHu.

Proof. Let κ be any partition with leading hooks (hooks in the first column) given by the set H,
with m “ maxpHq. The leading hooks of its conjugate partition are the hooks in the top row of κ.
This partition has one column for each number n in the set t0, 1, . . . ,muzH. The hook of the upper
box in the column corresponding to n is equal to m´ n as illustrated in Figure 9. �

Lemma 4.3. Let P be an pa, bq-Dyck path with positive hooks given by H, with m “ maxpHq. The
conjugate path P c has positive hooks given by tm´ n : n P t0, 1, . . . ,muzHu.

Proof. Let P be an pa, bq-Dyck path with positive hook set given by H and where m “ maxpHq.
Fill all the boxes on the left of the path with the hooks that are less than m. Hooks appearing in
the same row are equivalent mod a. Furthermore, the rows contain all the residues 0, 1, . . . , a ´ 1
modulo a because a and b are relatively prime and, as a consequence, the filled hooks contain all
the numbers from 0 to m.

Draw a diagonal parallel to the main diagonal passing through the upper left corner of the box
below P with the largest hook m. Consider the area A below this diagonal directly on the left of
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P as illustrated in Figure 9. The boxes in A are exactly the boxes on the left of the path with
hook length n less than m. Applying cyclic shifts to P to obtain a path below the main diagonal
transforms the area A to the area between the main diagonal and the shifted path. Since this
transformation maps the box with hook length m to the box with hook length 0 (when rotated 180
degrees), the hook length n gets transformed to the hook length m´ n. �

Example 4.4. In both Figure 7 and Figure 8, the set of hooks on the left isH “ t1, 2, 3, 4, 6, 7, 9, 11, 14u,
with m “ 14. The set t0, 1, . . . ,muzH “ t0, 5, 8, 10, 12, 13u, and subtracting these numbers from 14
we get that the leading and positive hooks of the conjugate are t14, 9, 6, 4, 2, 1u as desired.

Theorem 4.5. The skew length of P is equal to the skew length of P c.

Proof. Let ni ă ej be a skew inversion for the path P , with largest level m. The north and east
steps of the conjugate path are in correspondence with the north and east steps in the original
path, respectively. The corresponding north and east levels are given by n1i “ m ´ ni ´ b and
e1j “ m ´ ej ` a. A simple calculation shows that these satisfy n1i ` b ă e1j ´ a, giving a flip skew
inversion for P c. Thus, there is a one-to-one correspondence between skew inversions for P and flip
skew inversions in P c (and a similar correspondence between flip skew inversions for P and skew
inversions in P c). The result follows directly from Theorem 3.20. �

Remark 4.6. As explained in the proof of Theorem 4.5 the number of skew inversions of P c is
equal to the number of flip skew inversions of P . Therefore, the skew length of a conjugate path
may be thought of as the skew length of the original path when flipped to a pb, aq-Dyck path.

Consider the hook lengths of the boxes in the first row of an pa, bq-core partition κ. Find the
largest hook length of each residue modulo a. The a-columns of κ are the columns of κ corresponding
to these hook lengths. Theorem 4.5 implies the following result, which is illustrated in Figure 10.

Corollary 4.7. Let κ be an pa, bq-core partition. The number of boxes in the a-rows and b-boundary
of κ is equal to the number of boxes in the a-columns and b-boundary of κ.

Proof. The number of boxes in the a-rows and b-boundary of κ is equal to the skew length of κ.
The number of boxes in the a-columns and b-boundary of κ is equal to the skew length of κc. The
result then follows from Theorem 4.1 and Theorem 4.5 by applying Anderson’s bijection. �

5. The zeta map (and eta)

The zeta map is an intriguing map from Da,b to Da,b which can be defined in a wide variety of
ways. See, for example, [AHJ14, ALW14b, ALW14a, GM14], with equivalence of many definitions
given in [ALW14b]. The precise description of zeta depends on making some choices; in our
experience, these choices always resolve into one of two distinct maps, which we call zeta and
eta. The eta map can be interpreted as the zeta map applied to the conjugate of P , as proved
in Proposition 5.5. The joint dynamics of zeta and eta will be used to present a combinatorial
description of the inverse of zeta in Section 6.

In this section we present four combinatorial descriptions for computing the zeta and eta maps,
starting with an interpretation involving core partitions implicit in [AHJ14], followed by with an
equivalent description via the sweep maps considered in [ALW14b]. Our main contributions are two
new combinatorial descriptions of the zeta map involving interval intersections and a laser filling,
along with the study of the eta map in all four contexts.

5.1. Zeta and eta via cores.
Drew Armstrong conjectured a combinatorial interpretation for the zeta map by way of core

partitions, drawing inspiration from Lapointe and Morse’s bounded partitions [LM05], after learning
of Loehr and Warrington’s sweep map discussed in the next section. We present his definition and
provide a parallel definition for the eta map.
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Figure 10. (Left) The 8-boundary boxes of our favorite p5, 8q-core κ are shaded;
those in the 5-rows of κ are darker. (Right) The 8-boundary boxes of κ are shaded;
those in the 5-columns of κ are darker. The number of darkly shaded boxes on
the left 4 ` 3 ` 2 ` 1 “ 10 is equal to the number of darkly shaded boxes on the
right 6` 3` 1 “ 10. (See Corollary 4.7.)

Definition 5.1. Let P be an pa, bq-Dyck path and let cpP q be its corresponding pa, bq-core. From P
define two partitions λpP q and µpP q and corresponding lattice paths ζpP q and ηpP q:

‚ λpP q “ pλ1, . . . , λaq is the partition that has parts equal to the number of b-boundary boxes
in the a-rows of cpP q.

‚ µpP q “ pµ1, . . . , µbq is the partition that has parts equal to the number of a-boundary boxes
in the b-rows of cpP q.

‚ ζpP q is the pa, bq-Dyck path that bounds the partition λpP q.
‚ ηpP q is the pa, bq-Dyck path that bounds the conjugate of the partition µpP q.

The zeta map ζ : Da,b Ñ Da,b is defined by ζ : P ÞÑ ζpP q. The eta map η : Da,b Ñ Da,b is defined
by η : P ÞÑ ηpP q.

One can see from the definition of zeta and eta via the sweep map described below, that ζpP q
and ηpP q are indeed paths that stay above the main diagonal. We refer to [ALW14b] for a proof.

An alternative method for calculating λpP q and µpP q follows from Lemmas 3.22 and 3.23.

Lemma 5.2. The entries of the partitions λpP q and µpP q satisfy:

(i) λi is the number of skew inversions of P involving the north level ni.
(ii) µj is the number of flip skew inversions of P involving the east level ej.

In the pn, n ` 1q case, the zeta map specializes to the map studied in [Hag08] for classical
Dyck paths, which sends the dinv and area statistics considered by Haiman to the area and bounce
statistics considered by Haglund. One of the main interests on the zeta map is the fact that it
sends skew length to co-area, or equivalently, co-skew length to area.

Corollary 5.3. The skew length of P is equal to the co-area of ζpP q.

Proof. The co-area of ζpP q is by definition equal to the number of boxes in the partition λ. By
Lemma 5.2, this number of boxes counts the number of skew inversions of P , and thus is equal to
the skew length of P . �
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Figure 11. In our running example, ζpP q bounds the partition λpP q “ p4, 3, 2, 1, 0q
and ηpP q bounds the conjugate of the partition µpP q “ p3, 2, 2, 1, 1, 1, 0, 0q.

Remark 5.4. The dinv statistic for classical Dyck paths can be generalized to the rational Catalan
case as the number of boxes B above the path satisfying

armpBq

legpBq ` 1
ď
b

a
ă

armpBq ` 1

legpBq
,

where arm denotes the number of boxes directly on the right of B above the path, and leg de-
notes the number of boxes directly below B above the path. This intriguing statistic also satis-
fies dinvpP q “ areapζpP qq, see [LW09, Theorem 16] and [GM13]. As a consequence the co-skew
length and dinv statistics are the same,

(5.1) sl1pP q “ dinvpP q.

Note that the definition of dinv is preserved by flipping an pa, bq-Dyck path to a pb, aq-Dyck path,
and therefore skew length is preserved by flipping (as alternatively proved in Corollary 3.18). By
Remark 4.6, the skew length of the conjugate of P is equal to the skew length of P when flipped
to a pb, aq-Dyck path. This provides an alternative proof that skew length is preserved under
conjugation (Theorem 4.5).

Proposition 5.5. Let P be an pa, bq-Dyck path. Then

ηpP q “ ζpP cq.

Proof. There is a one-to-one correspondence between the skew inversions of P c and the flip skew
inversions of P , as shown in the proof of Theorem 4.5. Through Lemma 5.2, one deduces that λpP cq
is the conjugate of µpP q. As a consequence, ζpP cq “ ηpP q.

An alternative proof is presented in Section 5.2. �

Example 5.6. Figure 11 illustrates an example of the zeta map and the eta map applied to
our running example path P . From Example 3.24, the 8-boundary boxes in the 5-rows of cpP q
give λpP q “ p4, 3, 2, 1, 0q and the 5-boundary boxes in the 8-rows of the core cpP q give µpP q “
p3, 2, 2, 1, 1, 1, 0, 0q. Then ζpP q is the path that bounds λpP q and ηpP q is the path that bounds the
conjugate partition µpP qc “ p6, 3, 1, 0, 0q. We often combine λpP q, ζpP q, µpP q, and ηpP q as on the
right hand side of Figure 15.

The core partition cpP cq corresponding to the conjugate path P c is illustrated in the right part
of Figure 7. The a-rows of this core are the rows with leading hooks 14, 6, and 2. Counting the
number of b-boundary boxes in these rows shows that λpP cq “ p6, 3, 1, 0, 0q, which equals µpP qc.
We see that ηpP q “ ζpP cq.

Denote by P flip the result of flipping an pa, bq-Dyck path P to a pb, aq-Dyck path. The example
corresponding to the path P in Figure 11 and the following result are illustrated in Figure 12.
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Figure 12. Zeta and eta applied to the flipped Dyck path of our running example
path P .

Proposition 5.7. Let P be an pa, bq-Dyck path. Then,

ζpP flipq “ ηpP qflip,

ηpP flipq “ ζpP qflip.

Proof. The skew inversions of P flip are in correspondence with the flip skew inversions of P , and
therefore λpP flipq “ µpP q. As a consequence, ζpP flipq “ ηpP qflip. A similar argument shows
that µpP flipq “ λpP q and ηpP flipq “ ζpP qflip. �

5.2. Zeta and eta via sweep maps.
This section presents the combinatorial description of the zeta map on rational Dyck paths as a

sweep map created by Loehr and Warrington in [ALW14b].
Heuristically, this map ‘sweeps’ the line of fixed slope a

b across P starting on the main diagonal
moving to the northwest, recording north and east steps in the order in which they are met.
Analogously, the eta map ‘sweeps’ the line of slope a

b across P starting at the farthest point from
the main diagonal moving to the southeast, recording south and west steps in the order in which
they are met;. This procedure is illustrated for our running example in Figure 13.

Recall that the reading word LpP q is obtained by reading the levels that occur along the path
from southwest to northeast, excluding the final 0, and the reverse reading word MpP q is obtained
by reading from northeast to southwest, excluding the final 0.

Theorem 5.8 ([ALW14b]). The zeta map can be computed as follows:

p1q Place a bar over each of the entries of LpP q corresponding to an east step; these occur
exactly at the right (cyclic) descents of σ.

p2q Sort LpP q in increasing order, keeping track of the bars on various values.
p3q Read the resulting sequence of labels (bars and non-bars) to produce a new northeast lattice

path, which we denote ζpP q.

Theorem 5.9. The eta map can be computed as follows:

p11q Place a bar over each of the entries of MpP q corresponding to a west step; these occur
exactly at the right (cyclic) ascents of τ .

;These definitions exhibit the choice of ‘east-north’ or ‘west-south’ convention in [ALW14b].
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Figure 13. Zeta and eta via sweep maps. The steps of ζpP q are labeled by the
levels of the lattice points of P in order, recording whether they correspond to north
or east levels. The steps of ηpP q are labeled by the levels of the lattice points of
P in reverse order starting from the upper right corner, recording whether they
correspond to south or west levels.

p21q Sort MpP q in increasing order, keeping track of the bars on various values.
p31q Read the resulting sequence of labels (bars and non-bars) to produce a new southwest lattice

path from pb, aq to p0, 0q, which we denote ηpP q.

Example 5.10. In our running example in Figure 13, we mark the reading word

LpP q “ p0, 8, 16, 24, 19, 27, 22, 17, 12, 20, 15, 10, 5q,

which sorts to p0, 5, 8, 10, 12, 15, 16, 17, 19, 20, 22, 24, 27q. Thus ζpP q is the path

NENENENENEEEE.

We mark the reverse reading word

MpP q “ p0, 5, 10, 15, 20, 12, 17, 22, 27, 19, 24, 16, 8q,

which sorts to p0, 5, 8, 10, 12, 15, 16, 17, 19, 20, 22, 24, 27q. Thus ηpP q is the path

WWSWWWSWWSWSS, which is equivalent to NNENEENEEENEE.

Remark 5.11. Note that both computations in Theorem 5.8 and Theorem 5.9 can be performed
just as easily on the standardization σpP q of LpP q, since only the relative values of the labels
matter.

Proof of Theorems 5.8 and 5.9. Consider the path ζpP q described in Theorem 5.8. The number of
boxes on the left of the north step corresponding to a north level ni of P is equal to the number
of east levels smaller that ni. This number is equal to the number of skew inversions involving ni,
which coincides with λi by Lemma 5.2 piq. Therefore the described algorithm to compute ζpP q
coincides with the definition of zeta in Definition 5.1.

Consider the (rotation of the) path ηpP q described in Theorem 5.9. The number of boxes below a
given west step of P is equal to the number of south levels smaller than the corresponding west level.
This number is equal to the number of flip skew inversions involving the corresponding level ej ,
which coincides with µj by Lemma 5.2 piiq. Therefore, the described algorithm to compute ηpP q
coincides with the definition of eta in Definition 5.1. �

Using the description of zeta and eta in terms of sweep maps, we have the following alternative
proof of Proposition 5.5, which states that ηpP q “ ζpP cq.

Alternative proof of Proposition 5.5. The conjugate of P is obtained by applying a cyclic shift on P
and then rotating the diagram 180˝. As a result, the levels appearing in the reading word of P c
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Figure 14. Laser filling of a path P . The laser pointed from the lower right corner
of the box with filling 2 crosses two vertical walls of the path, while all other lasers
cross only one. The entries of the partition λpP q “ p4, 3, 2, 1, 0q are the sums of the
laser fillings on the rows. The entries of the partition µpP q “ p3, 2, 2, 1, 1, 1, 0, 0q are
the sums of the laser fillings on the columns.

appear in the opposite order in which they appear in the reading word of P , though cyclically
shifted. Furthermore, the east levels are transformed into west levels and the the north levels into
south, transforming the step p1q of the algorithm into step p11q. The cyclic shift changes all of
the levels in the reading word by the same amount, so this shift is has no impact on the sorting
operation performed in the second step. �

5.3. Zeta and eta via the laser filling.
This section presents a new interpretation of zeta and eta that are read from a laser filling in

the boxes below the path P and above the main diagonal. Our main result in this section describes
the partitions λ and µ in terms of the laser filling. This result will be used in Section 7 to give a
new beautiful combinatorial description of the inverse of the zeta map in the square case without
the use of bounce paths.

Figure 14 illustrates the following definition.

Definition 5.12. Let P be an pa, bq-Dyck path and let B be a box below P and above the line
y “ a

bx. Draw the line of slope a
b through the southeast corner of B (a bi-directional laser). The

laser filling of B is equal to the number of vertical walls of P crossed by the laser. Equivalently, it
is equal to the number of horizontal walls of P crossed by the laser.

Remark 5.13. Lasers also appear in Armstrong, Rhoades, and Williams’s [ARW13]. Their lasers
stop at the first wall they meet; by contrast, our lasers traverse (and count!) the walls of the path P .

Theorem 5.14. The partitions λ and µ associated to P can be computed as follows:

(i) The entries of λpP q are the sums of the laser fillings in the rows.
(ii) The entries of µpP q are the sums of the laser fillings in the columns.

Proof. The entries of λ count the skew inversions involving the north levels of each of the vertical
steps in the path. For a given vertical step, this number is equal to the number of horizontal steps
in the path that are strictly below the laser through its starting point. Each of these horizontal
steps is crossed by exactly one of the lasers through the lower right corners of the boxes below the
path that are in the same row of the vertical step in consideration. The statement piq follows. The
other part is proved similarly. �

Corollary 5.15. The skew length of P is equal to the sum of the laser fillings of P .

Proof. The skew length of P is equal to the area of λpP q. By the previous theorem, this area is
equal to the sum of all laser fillings of P . �
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Figure 15. Zeta and eta via interval intersections. The intervals on the left corre-
spond to the ordered level intervals of the vertical steps in the path. The intervals
on the top correspond to the level intervals of the horizontal steps. The shaded
boxes of λ and µ are the boxes whose corresponding row and column intervals do
not intersect.

5.4. Zeta and eta via interval intersections.
This section presents a second new combinatorial interpretation of zeta and eta in terms of

interval intersections. Each step of the path P has an associated closed interval whose endpoints
are the levels of its starting and ending points. When the intervals are ordered in increasing order,
zeta and eta can be directly determined.

Definition 5.16. Let P be an pa, bq-Dyck path. Let NpP q be the north levels of P and EpP q be
the east levels of P . Define the north intervals of P to be the set IN “ trni, ni ` bs for ni P NpP qu
and the east intervals of P to be the set IE “ trej ´ a, ejs for ej P EpP qu.

Theorem 5.17. Create an a ˆ b grid. Label the rows of the grid by the north intervals of P
increasing from bottom to top, and the columns of the grid by the east intervals of P increasing
from left to right. Fill in the boxes in this grid when the corresponding row and column intervals
do not intersect. The boundary path of the shaded boxes above the main diagonal is ζpP q and the
boundary path of the shaded boxes below the main diagonal is ηpP q, rotated 180 degrees.

Proof. This theorem is a straightforward consequence of Lemma 5.2. �

Example 5.18. For our running example path P , the north intervals are r0, 8s, r8, 16s, r12, 20s,
r16, 24s, and r19, 27s, which can be read directly from the north steps of P , or calculated from
the north levels as in Definition 5.16. Similarly, the east intervals of P are r0, 5s, r5, 10s, r10, 15s,
r12, 17s, r15, 20s, r17, 22s, r19, 24s, and r22, 27s. Labeling the rows of a 5 ˆ 8 grid with the north
levels and the columns with the east levels gives the right side of Figure 15. The shaded boxes
are the those where the corresponding row interval does not intersect the corresponding column
interval, from which λpP q, µpP q, ζpP q, and ηpP q can be read posthaste.

6. Pairing the zeta map with the eta map

By considering the zeta map together with the eta map, we gain two new ideas: a new approach
for proving that the zeta map is a bijection and (if ζ is a bijection) a new area-preserving involution
on the set of pa, bq-Dyck paths. For clarity and consistency, we have decided to use the letter P to
denote a path that is in the domain of ζ and use the letter Q to denote a path that is in the image
of ζ.

6.1. Inverse of the zeta map knowing eta.
For the image Z under the pair of maps

pζ, ηq : DÑ DˆD,
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we define a map ι : ZÑ D such that pζ, ηq ˝ ι is the identity map. Further, we conjecture that for
every pa, bq-Dyck path Q that appears as the image of ζ, there exists a unique pa, bq-Dyck path R
such that pQ,Rq P Z. This would imply that in Z every element of D appears exactly once as the
initial entry in the pair, from which it would follow that the zeta map is a bijection.

Definition 6.1. A pair of pa, bq-Dyck paths pQ,Rq is an admissible pair if pQ,Rq “
`

ζpP q, ηpP q
˘

for some pa, bq-Dyck path P . The set of admissible pairs Z Ă DˆD is the image under the pair of
maps pζ, ηq : DÑ DˆD.

We now describe a simple combinatorial description of the inverse map ι that recovers P from
the pair pQ,Rq or, equivalently, from the pair of partitions (λ, µ) they bound.

Definition 6.2. Let pQ,Rq be an admissible pair. Define ιpQ,Rq as follows.

(1) Draw the path Q above the diagonal and rotate the path R 180 degrees so that it embeds
below the diagonal in the same diagram. Label the steps of each path from 1 to a ` b
starting at the bottom-left corner and ending at the top-right corner in the order in which
they appear in the path.

(2) Create the permutation γ : ra` bs Ñ ra` bs as follows. If l is a label of an horizontal step
in Q, define γplq to be the label of the horizontal step in R that is in the same column of l.
If l is a label of a vertical step in Q, define γplq to be the label of the vertical step in R that
is in the same row of l.

(3) For admissible pairs pQ,Rq, γ is a cycle permutation. Interpret γ in cycle notation as
pσ1, σ2, . . . , σa`bq, fixing σ1 “ 1. Define P “ ιpQ,Rq to be the path whose east steps
correspond to the cyclic descents of σ.§

Theorem 6.3. γ is a cycle permutation and the map ι is the inverse map for the pair pζ, ηq.

Proof. Suppose pQ,Rq is an admissible pair, so that there exists a P P D such that pQ,Rq “
pζpP q, ηpP qq. Label the steps of Q and R with the levels of P as determined by the sweep map
algorithm given in Theorems 5.8 and 5.9 (as illustrated in Figure 13). The definition of the per-
mutation γ using these labels instead of on ra ` bs induces a permutation on the set of levels of
the lattice points of P . We will prove that this permutation is the cycle permutation given by the
reading word LpP q of P .

Because of the relationship between the forward reading word LpP q and the reverse reading word
MpP q, the labels of the vertical steps of R are exactly the labels of the vertical steps of Q plus
b, while the labels of the horizontal steps of R are exactly the labels of the horizontal steps of Q
minus a. This implies that the permutation γ maps the level of a lattice point in P to the level of
the next lattice point along P , forming a permutation on the set of labels that is a cycle ordered
by the reading word LpP q.

Since the level labels appear in order as we walk along Q, only the relative order of the labels
matters; returning all labels to the numbers from 1 up to a`b recovers γpP q, which when interpreted
as a permutation in one line notation is the reading permutation σpP q. By Remark 2.3, we recover
P directly from σpP q and the result follows. �

Taken with Theorem 6.3, the following conjecture would imply that ζ is a bijection.

Conjecture 6.4. Suppose that Q P Da,b. There exists at most one R P Da,b such that pQ,Rq P Z.

Example 6.5. Figure 16 illustrates the procedure outlined in Definition 6.2 for the pair pQ,Rq “
pζpP q, ηpP qq from our running example P . After labeling the paths Q “ ζpP q and R “ ηpP q from
1 to 13, we see that γp1q “ 3, γp2q “ 1, γp3q “ 7, etc. Writing γ in cycle notation gives

γ “ p1, 3, 7,12, 9,13,11,8, 5,10,6,4,2q.

§A descent occurs when σi ą σi`1. A cyclic descent is defined in the same way, but considering the indices
modulo a` b, allowing a descent in the last position of σ.
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Figure 16. Calculating P “ ιpQ,Rq using the method in Definition 6.2.

If we instead interpret this sequence of numbers as the one line notation of a permutation σ, the
cyclic descents of σ are bolded and correspond to the east steps of ιpQ,Rq. We see that ιpQ,Rq “ P .

Remark 6.6. The essence of the proof of Theorem 6.3 is that the ζ and η maps track the positions
of the right cyclic descents of LpP q and MpP q. Using these two sets of data, and the precise
relationship between LpP q and MpP q, we are able to solve for the levels of P . Interestingly, ζpP q
does not obviously contain enough information to reconstruct P . We cannot construct a unique
permutation solely from its collection of right descents, and need additional information to recover
P . In the standard Catalan case, this additional information is essentially implied by the particular
structure of the nˆpn`1q rectangle; for the general case, we obtain the extra information necessary
from ηpP q.

6.2. An area-preserving involution on rational Dyck paths.
If ζ is invertible, we can use η to define a new area-preserving involution on the set of pa, bq-

Dyck paths, induced by the conjugate map under ζ which we call the conjugate-area map. This
involution sends the path ζpP q to the path ηpP q “ ζpP cq and is predictable for certain families of
pa, bq-Dyck paths.

Definition 6.7. The conjugate-area map applied to an pa, bq-Dyck path Q is the path

χpQq :“ ζ ˝ c ˝ ζ´1pQq.

If λ is the partition bounded by Q, we define χpλq to be the partition bounded by χpQq.

P ζpP q

P c ηpP q

zeta

conj-areaconjugate

zeta

eta

Figure 17. Diagrammatic description of the conjugate-area involution.

Remark 6.8. For partitions λ and µ bounded by ζpP q and ηpP q we have χpλq “ µc.

Proposition 6.9. If the zeta map is a bijection then the conjugate-area map is an area-preserving
involution on the set of pa, bq-Dyck paths.
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Figure 18. The left-justified and up-justified partitions χpλnq “ pµnqc and their
corresponding path Pn for n “ 8.

Proof. Since conjugation is an involution, we see that applying the operator ζ ˝ c ˝ ζ´1 twice
is equal to the identity, and therefore χpχpQqq “ Q. Furthermore, conjugation preserves skew
length (Theorem 4.5), which is mapped to co-area via the zeta map. Thus, χ must be an area-
preserving involution. �

One possible approach to prove that ζ is a bijection would be to directly construct the invo-
lution χ. In Section 7 we show that in the square case χ is exactly the map that reverses the
path P ; equivalently one finds χpλq by simple conjugation. In the rational case, conjugation must
fail in general because conjugates of partitions may not sit above the main diagonal. Although,
Proposition 6.11 exhibits our empirical observation that for ‘small’ partitions λ, χpλq is often the
conjugate.

We have found that χ is predictable in other families of examples as well; in Section 8 we present
an inductive combinatorial description of the inverse of the zeta map and of the area-preserving
involution for a nice family of examples.

Example 6.10 (Left-justified and up-justified partitions). Consider two families of partitions whose
Young diagrams fit above the main diagonal in the aˆb grid. Let n P N be a number no bigger than
the number of boxes above the main diagonal in the aˆ b grid. Define the left-justified partition λn

to be the partition whose Young diagram has n boxes as far to the left as possible and the up-
justified partition µn to be the partition whose Young diagram has n boxes as far up as possible.
Figure 18 shows λ8 embedded above the diagonal and µ8 rotated 180 degrees and embedded below
the diagonal.

Proposition 6.11. The left-justified and up-justified partitions are related by the conjugate-area
map:

χpλnq “ pµnqc.

Moreover, ζ´1pλnq is the path with area n containing the first n positive hooks in the grid.

Proof. Let Pn be the path containing the first n positive hooks in the grid. This path consists of
all the boxes below a line parallel to the main diagonal sitting in the highest level of the path, and
therefore all the labels in the laser filling are equal to 1. Adding the labels in the rows and the
columns we obtain the partitions λn and µn. �

Figure 18 illustrates and example of left-justified and up-justified partitions λn and µn together
with their corresponding path Pn for n “ 8. The reader is invited to verify that ζpP 8q and ηpP 8q

are given by the paths bounded by λ8 and µ8 using any of the methods described in Section 5, as
well as to verify that the inverse map ι presented in Section 6 gives P 8 when applied to the paths
bounding λ8 and µ8.
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�
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Q
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Figure 19. The conjugate-area involution in the pn, n` 1q case.

7. The square case

In this section, we consider pn, n ` 1q-Dyck paths, lattice paths in an n ˆ pn ` 1q grid staying
above the main diagonal. They are in bijection with classical Dyck paths in an n ˆ n grid by
simply forgetting the last east step of the path. Haglund and Haiman [Hag08] discovered a beau-
tiful description of the inverse of the zeta map in this case using a bounce path that completely
characterizes the area sequence below the path. We present a new combinatorial description of the
inverse of the zeta map in this case in terms of an area-preserving involution. This approach opens
a new direction in proving that the zeta map is a bijection in the general pa, bq case.

7.1. The conjugate-area involution, conjugate partitions and reverse paths.
Let Q be an pn, n` 1q-Dyck path. The area-preserving involution χ conjugates the partition λ

bounded by the path Q. For simplicity, denote by Qr the path whose bounded partition is λc. We
refer to P r as the reverse path of Q. Forgetting the last east step of the path, the reverse operation
acts by reversing the path in the nˆn grid. An example of the conjugate-area involution, conjugate
partition and reverse path is illustrated in Figure 19.

Theorem 7.1. For a Dyck path Q and the partition λ it bounds, we have χpQq “ Qr and χpλq “ λc.

Proof. We need to show that the partitions λ and µ bounded by the images ζpP q and ηpP q of any
pn, n` 1q-Dyck path P satisfy

χpλq “ µc “ λc.

Equivalently, we need to show that λ “ µ. The entries of the partitions λ and µ are the sums
of the labels in the laser filling of P over the rows and columns respectively (Theorem 5.14). We
will show that the values of the sums over the rows are in correspondence with the values of the
sums over the columns, and therefore λ “ µ. This correspondence is illustrated for an example in
Figure 20.

For every row, draw a line of slope 1 in the northeast direction pointing from the starting point
of the north step in that row. This line hits the path for the first time in the ending point of an
east step of the path. The labels of the laser filling in the boxes in the column corresponding to
this east step are exactly the same as the labels of the laser filling in the row in consideration.
(This is because the lasers are lines with slope n

n`1 , which implies that for any two boxes on the
same diagonal of slope 1 that are not interrupted in line of sight by the path P , they will have the
same laser filling.) Thus, their corresponding sums are equal. Doing this for all the rows gives the
desired correspondence between the entries of the partition λ and the entries of the partition µ. �
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therefore λ “ µ.
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Figure 21. The inverse of ζ by way of conjugate partitions.

7.2. The inverse of the zeta map.
Now that Theorem 7.1 provides the explicit formula for χ, the method to find inverse of the zeta

map in the pn, n` 1q case follows as a direct consequence of Theorem 6.3. The description of the
map ι is presented in Definition 6.2.

Theorem 7.2. Let Q be an pn, n` 1q-Dyck path. Then, ζ´1pQq “ ιpQ,Qrq.

An example of this result is illustrated in Figure 21. The laser filling of the path ζ´1pQq in this
example is shown in Figure 20. One can verify that the sum of the labels of the laser filling on the
rows and columns gives rise to the partitions λ and µ bounded by Q and χpQq (Theorem 5.14).

An alternative way to obtain the cycle permutation γ directly from Q is as follows. Shade the
boxes in the nˆpn` 1q rectangle that are crossed by the main diagonal as illustrated in Figure 22.
Move east from a vertical step labeled i until the center of the first shaded box you see, and then
move up until hitting an horizontal step of the path. The image γpiq is equal to the label of this
horizontal step plus 1. In the example of Figure 22, the path starting at the vertical step labeled
7 hits the horizontal step 12, therefore γp7q “ 12` 1 “ 13.
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Figure 22. Alternative description of the cycle permutation γ.

In order to determine γpiq of a label of an horizontal step, we move down until the center the
last shaded box we see, and then move left until hitting a vertical step of the path. As before, γpiq
is equal to the label of this vertical step plus 1. In the example, γp15q “ 10 ` 1 “ 11. The image
of the label of the first horizontal step of the path is by definition equal to 1. Interpret γ in cycle
notation as pσ1, σ2, . . . , σ2n`1q where we fix σ1 “ 1. As a direct consequence of Theorem 7.2 we
get:

Theorem 7.3. Let Q be an pn, n` 1q-Dyck path. The inverse ζ´1pQq is the path whose east steps
correspond to the cyclic descents of the permutation γ when interpreted in one line notation.

8. Zeta inverse and area-preserving involution for a nice family of examples

In this section we present an inductive combinatorial description of the inverse of the zeta map
and of the conjugate-area involution χ for a nice family of pa, bq-Dyck paths. This family consists
of the Dyck paths that contain the lattice point with level 1. Such Dyck paths are obtained by
concatenating two Dyck paths in the a1 ˆ b1 and a2 ˆ b2 rectangles illustrated in Figure 23. The
sides of these two rectangles are the unique positive integers 0 ă a1, a2 ă a and 0 ă b1, b2 ă b such
that

a1b´ b1a “ 1,

b2a´ a2b “ 1.

As a consequence, a1 and b1 are relatively prime as well as a2 and b2, allowing us to apply induction.

8.1. Zeta inverse. Let P be an pa, bq-Dyck path congaing the lattice point at level 1, and let P 1

and P 2 be the two Dyck paths in the a1 ˆ b1 and a2 ˆ b2 rectangles whose concatenation is equal
to P . Define the star product of P 1 ‹P 2 as the path obtained by cutting P 1 at its highest level and
infixing P 2. This special product is illustrated in Figure 24. Note that the highest level of P 1 can
be equivalently obtained by sweeping the main diagonal of either the aˆ b rectangle or the a1 ˆ b1

rectangle.

Theorem 8.1. If Q is an pa, bq-Dyck path containing the lattice point at level 1, zeta inverse of Q
is equal to the star product of the zeta inverses of Q1 and Q2:

ζ´1pQq “ ζ´1pQ1q ‹ ζ´1pQ2q.
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Figure 23. Base induction for zeta inverse and the area-preserving involution.
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Figure 24. Star product of rational Dyck paths.

Proof. We will show that ζpP 1 ‹ P 2q is the concatenation of ζpP 1q and ζpP 2q, the theorem then
follows by applying zeta to both sides of the equation. Since the path P 1 is cut at its highest level,
sweeping the main diagonal of the aˆ b rectangle crosses the levels of P 1 ‹P 2 corresponding to the
path P 1 first, followed by all the levels corresponding to the path P 2. Therefore, ζpP 1 ‹ P 2q is the
concatenation of ζpP 1q and ζpP 2q. �

8.2. Area-preserving involution. The conjugate-area map of Q can be obtained by induction
in this case as well.

Lemma 8.2. Let l be the level of a lattice point p in the aˆ b grid. If Ul is the rectangle composed
by the boxes northwest of p and Ũl is the rectangle composed by the boxes southeast of p, then

areapŨlq ´ areapUlq “ l.

Proof. If p “ pp1, p2q, then l “ p2b´ p1a. Furthermore,

areapŨlq ´ areapUlq “ pb´ p1qp2 ´ p1pa´ p2q “ p2b´ p1a “ l.

�

Theorem 8.3. Let Q is an pa, bq-Dyck path containing the lattice point at level 1. The bounded
partition of χpQq is the partition whose restriction to the a1 ˆ b1 and a2 ˆ b2 rectangles gives the
bounded partitions of χpQ1q and χpQ2q, and which contains all boxes below the main diagonal outside
the two rectangles.

Proof. We first observe that χpQq defined this way has the same area of Q. This is equivalent
to show that the bounded partitions of χpQq and Q have the same area, when restricted to the

complement of the a1 ˆ b1 and a2 ˆ b2 rectangles. These restrictions are exactly the rectangle Ũ1

after removing the box on its upper left corner, and the rectangle U1. The claim then follows by
Lemma 8.2.

Now, let γ1 and γ2 be the cycle permutations arising from the pairs pQ1, χpQ1qq and pQ2, χpQ2qq,
and γ be the cycle permutation of pQ,χpQqq. The cycle permutation γ can be obtained by cutting γ1
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exactly before its highest value and putting γ2 in between, with all its values increased by a1 ` b1.
In the example in Figure 25 we get

γ1 “ p1, 3 | 5, 4, 2q

γ2 “ p1, 3, 7, 5, 8, 6, 4, 2q

γ “ p1, 3, 6, 8, 12, 10, 13, 11, 9, 7 5, 4, 2q

The cyclic descents of γ correspond exactly to the cyclic descents of γ1 and γ2. Moreover, the
descent at the highest value of γ1 corresponds to the east step at the highest level of ζ´1pQ1q.
Thus, replacing cyclic descents in γ by east steps and ascents by north steps gives rise to the start
product ζ´1pQ1q ‹ ζ´1pQ2q, which is equal to ζ´1pQq by Theorem 8.1. �

1Q0

Q00

Figure 25. The inductive conjugate-area map for paths containing level 1.

8.3. kth valley Dyck paths. One interesting family of pa, bq-Dyck paths is the family of kth
valley Dyck paths, paths Qk with valleys at levels 0, 1, 2, . . . , k for some k ă a. The area-conjugate
map for these paths behaves very nice and can be described in terms of the rectangles Ul and Ũl
in Lemma 8.2.

For 0 ă l ă a, consider the collections of boxes Vl and V̂l defined by

Vl “ Ul r
l´1
ď

i“1

Ui, V̂l “ Ûl r
l´1
ď

i“1

Ûi,

where Ûi is composed of the boxes of Ũi that are below the main diagonal. Equivalently, Ûi is the
result of removing the box in the upper left corner of Ũi. An example is illustrated in Figure 26.

Lemma 8.4. For 0 ă l ă a, the area of Vl is equal to the area of V̂l.

Proof. Since V1 “ U1 and V̂1 “ Û1, which is Ũ1 after removing one box, Lemma 8.2 implies that V1

and V̂1 have the same area. The level 2 becomes level 1 in the smaller a2ˆ b2 rectangle, and V2, V̂2

are given by U1, Û1 in this smaller rectangle. Again, Lemma 8.2 implies that V2 and V̂2 have the
same area. Continuing the same argument in the smaller rectangles that appear in the process
finishes the proof. �

Note that the bounded partition of Qk is the (disjoint) union of V1, . . . , Vk.

Proposition 8.5. The bounded partition of χpQkq is the (disjoint) union of V̂1, . . . , V̂k.

Proof. Note that the restriction of Qk to the a1 ˆ b1 and a2 ˆ b2 rectangles gives two smaller kth
valley Dyck paths Q1k1 and Q2k2 . The result then follows directly from Theorem 8.3 by induction
on k. �

Figure 27 illustrates an example of the inverse of the zeta map for kth valley Dyck paths obtained
by applying Theorem 6.3.
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Figure 26. Example of the conjugate-area map for kth valley Dyck paths for k “ 3.
The area of Vi is equal to the area V̂i.
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Figure 27. Example of the inverse of the zeta map for kth valley Dyck paths for k “ 3.

9. Towards the bijection

We have tried a number of approaches for showing that ζ itself is a bijection, without success.
In this section, we detail some of our approaches which are combinatorially interesting and may
play a role in an eventual proof.

9.1. Characterizing permutations.
We first focus on the permutations σpP q and γpP q, which fully encode P , ζpP q, and ηpP q.
The exceedences of γpP q encode both ζpP q and ηpP q by way of their positions and values. If i

and j are adjacent entries of σpP q with i ă j, then in γpP q we have i ă j “ γpiq, which is exactly
an exceedence. Ascents in σpP q encode north steps of P , so this exceedence tells us that the ith
step of ζpP q is a north step. As such, the positions of the exceedences in γpP q encode ζpP q.

Similarly, the values of the exceedences of γpP q encode ηpP q. In fact, if we draw the path whose
north steps are given by the values of the exceedences of γpP q, we will obtain a path strictly below
the diagonal which may be rotated to obtain ηpP q. This correspondence is clear from the method
for computing P from ζpP q and ηpP q in Section 6.1, see Figure 16.

Proposition 9.1. The positions of the exceedences of γpP q give the collection of north steps
in ζpP q, and the values of the exceedences of γpP q are the north steps in ηpP q when rotated 180˝.

Example 9.2. The permutations σpP q and γpP q for our running example path P in Figure 1 are

σpP q “ r1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2s
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and

γpP q “ p1, 3, 7, 12, 9, 13, 11, 8, 5, 10, 6, 4, 2q

“ r3, 1, 7, 2, 10, 4, 12, 5, 13, 6, 8, 9, 11s.

Recall that square brackets are used for one-line notation and round parentheses for cycle notation.
The exceedences of γ are at positions t1, 3, 5, 7, 9u, which are exactly the north steps of ζpP q
illustrated as the path Q in Figure 16. The values of γpP q at these positions are t3, 7, 10, 12, 13u,
which are precisely the north steps of ηpP q illustrated as the path R in Figure 16.

We can directly construct the conjugate map on the level of permutations algebraically. Recall
that the inverse map on permutations exchanges the roles of values and positions. Let ω0 be the
longest element of Sa`b. Then one may check that

γpP cq “ ω0γpP q
´1ω0.

This involution exchanges ζpP q and ηpP q, but does not tell us how to construct ζpP q directly
from ηpP q. We expect that a strong combinatorial characterization of the permutations γ that
arise from an actual path P would give an understanding of the conjugate-area map, and thus
allow the bijection to be proven.

Recall from Section 6.1 that we can read γpP q from the diagram embedding ζpP q above the
diagonal and ηpP q below the diagonal. Given any two pa, bq-Dyck paths, we could embed them
together in a diagram, one playing the role of Q and the other playing the role of R. The resulting
diagram yields a permutation γ, and we naturally ask whether this γ actually arises as γpP q for
some path P . The answer, of course, is almost always no: a strong characterization of legal pairs
of paths would yield a direct description of the conjugate-area map.

When pairing arbitrary Q and R paths a number of things can go wrong. First, Theorem 4.5
implies that in order to come from an actual path, we must have areapQq “ areapRq. Second, we
know that γ must have a single cycle; it is simple to construct examples where this does not occur.
It is also possible to find pairs pQ,Rq where γ has a single cycle, but the labels li obtained from
the reverse bijection are in the wrong relative order. In other words, we may have ζpιpQ,Rqq ‰ Q.

9.2. Box math and a new statistic.
Our next approach relies on careful analysis of the poset structure on the set of rational Dyck

paths under the usual inclusion relation: we say P ă Q if the the path P is weakly below the path
Q, or, equivalently, if the set of positive hooks of P is contained in the set of positive hooks of Q.
This poset is graded by the area statistic, with covering relation given by adding a single box (or
equivalently, including an appropriate hook in cpP q). Since ζ takes skew length to co-area, it makes
sense to examine what happens to the poset structure under the ζ map. The poset structure is
fairly well behaved when adding or removing maximal hooks.

Definition 9.3. The maximal level m of a path P is the largest level appearing in the reading word
of LpP q. Likewise, the maximal box is the outer corner of P labeled by the maximal level m. For
any path with area greater than 0, we define the predecessor of P as the path obtained by removing
the outer corner of P farthest from the diagonal. This replaces the maximal level m with m´a´ b
in LpP q.

Lemma 9.4. Suppose that P is an pa, bq-Dyck path with predecessor P 1. We have slpP 1q ă slpP q.

Proof. Since P 1 is obtained by removing the maximal box of P , the laser filling of P 1 is equal to
the laser filling of P when removing the laser filling of its maximal box. Since skew length is equal
to the sum of the entries in the laser filling, the result follows. �

Since every path has a unique maximal hook, we induce a spanning tree T in the Hasse diagram
of D with the property that if P 1 ă P in T , then slpP 1q ă slpP q.
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We can also precisely describe the combinatorial effect of removing the maximal box from P
on ζpP q.

Proposition 9.5. All of the following operations are equivalent ways to remove the maximal box:

(1) Remove the box whose outer corner is furthest from the diagonal,
(2) Remove the longest row from cpP q,
(3) Remove the box whose associated hook length is greatest, or
(4) In the reading word pl1, l2, . . . , la`bq of P , reduce the maximal level m by pa` bq, leaving all

other levels unchanged.
(5) In the standardization σpP q, let α be the number of levels of P greater than m ´ a ´ b

excluding m. Replace the entry pa` bq in σ with a` b´ α, and increase all entries greater
than or equal to a ` b ´ α by one. Equivalently, multiply σpP q on the left by the cycle
permutation ρa`b´α,a`b with cycle notation pa` b´ α, a` b´ α` 1, . . . , a` bq.

(6) Conjugate the permutation γpP q by the cycle ρa`b´α,a`b to obtain:

ρa`b´α,a`bγpP qρ
´1
a`b´α,a`b.

Proof. The second opertion follows directly from the definition of cpP q. The third method is clear
from inspection, and the fourth item is the effect on the relative sizes of the labels li of applying
the third method. The fifth item follows from fourth, and the sixth item follows from the effect of
conjugation on the cycle notation of a permutation. �

We can thus try to understand the structure of the tree T by understanding certain conjugations
of the permutation γpP q.

In fact, we find it somewhat more convenient to focus on removing a maximal box from the
conjugate of P . This operation corresponds to removing the maximal column from cpP q. The
operation on paths, though, is particularly interesting.

There is good reason to consider the path P as a cycle rather than as a fixed path. For example,
there is an action of the cyclic group Ca`b on P , obtained by rotating the last step to the start
of P . The effect of this cyclic action on the labels li is to change all of the labels by the same fixed
amount. (For example, moving a horizontal step to the front will decrease all labels by a.) This
action obviously preserves the relative order of the various labels, li. As a result, both ζ and η
are constant on the cyclic orbit. This is the underlying combinatorial reason that we consider the
standardization σpP q as a cycle, rather than as a one-line notation.

Removing a box from a path is equivalent to finding an adjacent pair of letters NE in the path,
and switching them to EN . Contrariwise, adding a box is a process of transforming an EN pair to
a NE. However, when P is a Dyck path, the first step is always an N and the last step is always an
E. When we consider P as a cycle, it makes sense to try exchanging this ‘adjacent’ EN pair. We
can observe that (using the characterization of the conjugate of a path) that adding the box at the
label l1 “ 0 is equivalent to removing the maximal box from P c. This reduces all labels li by a` b
except for the label l1 “ 0, which remains the same. As a result, the relative value of the label 0 is
increased from 1 to some number δ equal to the number of labels li ă a` b, while all other labels
ď δ are reduced by one. We make this definition explicit and we have proved the following.

Definition 9.6. Define δpP q to be the number of labels li ă a` b along P .

Proposition 9.7. Let P 1 be the conjugate of the path obtained by removing the maximal box
from P c. The permutation γpP 1q is the conjugate

γpP 1q “ ρ´1
1,δpP qγpP qρ1,δpP q.

The action of removing the maximal box from P c on Q “ ζpP q is also completely determined
by δpP q. For simplicity, we call the path Q1 “ ζpP 1q the ζ-predecessor of Q.

Proposition 9.8. The ζ-predecessor of Q “ ζpP q is completely determined by δ “ δpP q as follows:
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1. All the steps in Q after the first δ steps remain unchanged.
2. The first δ steps are rotated as follows:

(a) the first east step that appears is changed to a north step,
(b) the first north step is changed to an east step,
(c) the first δ steps are rotated once (rotating the first step to the end of the first delta steps).

Example 9.9. An example of this procedure is illustrated in Figure 28 for the path Q “ ζpP q
associated to our running example path P . The number of levels of P smaller than a`b is δpP q “ 5.
The cycle permutation γ1 is obtained from γ by rotating the labels 1, . . . , 5. The positions of
exceedences in γ are t1, 3, 5, 7, 9u which are the positions of the north steps in Q, and the positions
of exceedences in γ1 are t1, 2, 4, 7, 9u which are the positions of the north steps in Q1.

1
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5
4

2

= (1,3,7,12,9,13,11,8,5,10,6,4,2)�

Q ⇣-Predecessor Q0

1

3

5
4

2

�0= (5,2,7,12,9,13,11,8,4,10,6,3,1)

Figure 28. Determining the ζ-predecessor of a path Q “ ζpP q with δpP q.

Proof. As above, let P 1 be the conjugate of the path obtained by removing the maximal box
from P c and Q1 “ ζpP 1q be the ζ-predecessor of Q. Let γ “ γpP q and γ1 “ γpP 1q, and recall that
the north steps of Q and Q1 are encoded by the positions of exceedences in γ and γ1 respectively.
The statement is equivalent to prove

1. The positions of exceedences in γ that are greater than δ are preserved and remain exceedences
after rotation.

2. The positions of exceedences less than or equal to δ behave as follows:
(a) the position i of the first east step in Q is a non-exceedence in γ but is rotated to an

exceedence at position i´ 1 in γ1,
(b) position 1 is an exceedence in γ but is rotated to a non-exceedence at position δ in γ1,
(c) the positions j ‰ 1 of exceedences in γ are rotated to positions j ´ 1 of exceedences in γ1.

These assertions follow from the description of γ1 in terms of γ and δ. As illustrated in Figure 28,
the cycle notation of γ1 can be obtained by rotating the labels t1, . . . , δ ´ 1, δu to tδ, 1 . . . , δ ´ 1u
in the cycle notation of γ. Item 1 is clear from this description. Part (a) of item 2 follows from
the fact that γpiq “ 1 which implies that γ1pi´ 1q “ δ (an exceedence). For this we need to argue
that i ă δ, but this is clear since i is the relative value of the level a, which is less than a ` b,
in LpP q. Similarly, γp1q is the relative value of the level b in LpP q and therefore γp1q ă δ. Rotating
the value 1, this implies that γ1pδq “ γp1q ´ 1 (a non-exceedence) and part (b) follows. All other
positions j ‰ 1 of exceedences less than or equal to δ in γ are clearly rotated to an exceedence at
position j ´ 1 in γ1 and part (c) follows. �

Remark 9.10. The two formulations in Proposition 9.7 and Proposition 9.8 have the advantage
that we do not actually need to know the value of the maximal label m, and reduces the problem of
showing that ζ is a bijection to computing a single statistic. To wit, if δpP q can be directly computed
from Q “ ζpP q, then we can obtain the ζ-predecessor of Q, and repeat until we arrive at the initial
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path P0. This would completely determine P from ζpP q. To be more precise, let Q “ Q1, . . . , Ql
be the list of ζ-predecessors of Q with Ql being the final path containing all boxes above the main
diagonal, and let δi be the δ-statistic corresponding to Qi. The permutation γpP q is determined by

γpP q “ ρ γ0 ρ
´1,

where ρ “ ρ1,δ1 . . . ρ1,δl´1
, ρ1,i is the permutation with cycle notation p1, . . . , iq, and γ0 “ γpP0q.

The east steps of the path P are encoded by the cyclic descents of γ when considered in one-line
notation, as described in Section 6.1. An example of this is presented for describing the inverse of
the zeta map in the Fuss-Catalan case pa, ak ` 1q in Section 9.4.

Corollary 9.11. If δpP q is determined uniquely by ζpP q for all P , then the map ζ is invertible.
In such case, the inverse path P is determined from γpP q as in Remark 9.10.

Remark 9.12. The δ statistic has also been considered shortly after this paper by Xin in [Xin15a].
This statistic, and other related statistic called “key”, is used by the author to present a search
algorithm for inverting the zeta map. This algorithm shows an alternative proof that the zeta map
is a bijection in the Fuss-Catalan cases pa, ak ˘ 1q, by giving a recursive construction of ζ´1pQq.
However, the general case remains open. The results of Xin [Xin15a] are very similar to those
presented in this section, and also use the operations of removing the maximal box in P and P c.
Corollary 9.11 should be compared with [Xin15a, Corollary 19]. We also present estimates for
the δ statistic and a precise formula in the Fuss-Catalan case pa, ak ` 1q in Proposition 9.16 and
Corollary 9.18, which should be compared with [Xin15a, Theorem 16]. The estimates we present in
Proposition 9.16 determine the number of children of the nodes in the search tree in the “ReciPhi
algorithm” in [Xin15a, Section 5]. Our algorithm for describing the inverse of zeta in the Fuss-
Catalan case pa, ak ` 1q in Section 9.4 should be compared with the ReciPhi algorithm for the
Fuss-Catalan cases in [Xin15a, Section 5].

Remark 9.13. Computer evidence suggests that δpP q should be computable from ζpP q. We used
decision trees, a common machine learning algorithm, to try to calculate δpP q directly from ζpP q. A
regression decision tree attempts to take a vector v and reconstruct a function fpvq by constructing
a binary tree [BFSO84]. At each node of the tree, a simple comparison is made (such as v2 ă 4.5),
with a ‘true’ result sending the computation to the right child node and a ‘false’ result sending to
the left child node. The actual learning algorithm determines which comparisons to make at each
level by looking at many examples to decide where the most profitable ‘split’ in the data is. For our
investigations, we used the implementation of descision trees available in Scikit-Learn [PVG`11].

Our methodology was to fix an pa, bq pair and randomly divide the available paths into a training
set consisting of 75% of the paths, and a testing set with the remaining 25%. The decision tree is
trained on the training set, and testing paths are used for evaluation.

We found that decision trees were quite capable of learning to predict δpP q for any fixed pair
pa, bq we provided. For example, at pa, bq “ p17, 7q, there are 14,421 Dyck paths. We found that the
decision tree was able to exactly predict δ over 92% of the time. Treated as a regression problem,
the coefficient of determination of the decision tree was greater than 0.99, indicating that the errors
were also quite small. Exploration for a variety of other choices of pa, bq yielded similar results.

The decision tree is essentially treating the δ statistic as a function on the integral points of a
polytope, and learning the distribution of the δ on the polytope. Our exploration indicates that the
distribution of δ is well behaved, and that there may be a combinatorial algorithm for computing
δ exactly.

By way of comparison, set ψpP q to be the number of peaks in P . Predicting ψ from ζpP q is much
more difficult. With pa, bq “ p17, 7q, the decision tree’s coefficient of determination in predicting ψ
is only 0.35.

As a final note, there are many possible ways to encode a Dyck path as a vector; for example,
as a t0, 1u-string with a 0’s and b 1’s, or as the partition λ which sits above the path in an a ˆ b
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rectangle. For the purposes of predicting the δ statistic, we found that a most convenient encoding
for ηpP q was as the values of the exceedences of γpP q. Our decision trees allow us to see the
importance of the vector coordinates in making the final prediction; in this encoding, the value
of γp1q ends up having very high importance.

A moment’s reflection shows that γp1q is equal to the number of labels li ă b, so that γp1q quite
directly impacts δ. Furthermore, for any li ă b, we will also have an l1i “ li`a ă a` b, so that γp1q
contributes something ď 2γp1q to δ (there may be some double counting here if b is much larger
than a).

9.3. Initial part of a rational bounce path. The zeta map has been shown to be a bijection in
the special “Fuss-Catalan” cases pa, am˘1q by way of a “bounce path” by which zeta inverse could
be computed [Loe05, GM14]. However, constructing such a bounce path for the general pa, bq case
remains elusive. In this section, we construct the initial part of a rational bounce path and show its
relation to the δ statistic. In particular, we explicitly compute δ in the Fuss-Catalan case pa, ak`1q.

Definition 9.14. Let Q be an pa, ak`rq-Dyck path with 0 ď k and 0 ă r ă a. The rational initial
bounce path of Q consists of a sequence of alternating k` 1 vertical moves and k horizontal moves.
We begin at p0, 0q with a vertical move followed by a horizontal move, and continue until eventually
finish with the pk`1qth vertical move. Let v1, . . . , vk`1 denote the lengths of the successive vertical
moves and h1, . . . , hk denote the lengths of the successive horizontal moves. These lengths are
determined as follows.

We start from p0, 0q and move north v1 steps until reaching an east step of Q. Next, move h1 “ v1

steps east. Next, move north v2 steps from the current position until reaching an east step of Q.
Next, move h2 “ v1 ` v2 steps east. In general, we move north vi steps from the current position
until reaching an east step of the path, and then move east ei “ v1 ` ¨ ¨ ¨ ` vi steps. This is done
until obtaining the last vertical move vk`1.

Examples of the initial bounce path in the Fuss-Catalan case are presented in Figure 29.

Remark 9.15. The definition of the initial bounce path is exactly the same as an initial part of the
bounce path in the Fuss-Catalan case [Loe05, GM14]. The description of this initial part remains
the same for the general pa, bq-case but we still do not know how to extend it to a complete bounce
path in general.

It turns out that the initial bounce path is closely related to the δ statistic. Denote by |v| “
v1` ¨ ¨ ¨ ` vk`1 and by |h| “ h1` ¨ ¨ ¨ ` hk. In all the results of this section we always assume 0 ď k
and 0 ă r ă a.

Proposition 9.16. Let Q “ ζpP q be an pa, ak ` rq-Dyck path and rδpP q ď δpP q be the number of
levels in P that are less than or equal to apk ` 1q. The two following equations hold:

(9.1) rδpP q “ |v| ` |h| ` 1,

(9.2) |v| ` |h| ` 1 ď δpP q ď |v| ` |h| ` r.

This proposition will follow from the following lemma. Note that every such a path P contains
the east levels a, 2a, . . . , pk ` 1qa at the end of the path. Moreover,

Lemma 9.17. The east steps of Q “ ζpP q that are reached by the vertical moves v1, . . . , vk`1 of
its initial bounce path correspond to the east levels a, 2a, . . . , pk ` 1qa of P .

Proof. Denote by A0 “ t0, 1, . . . , a ´ 1u the set of natural numbers between 0 and a ´ 1, and
let Ai “ A0 ` ia be the translation of A0 by ia. Note that the number of boxes above the main
diagonal that are directly on the right of a north step with north level in Ai is exactly equal to i.
So, these sets can be used to encode the “area-vector” of a Dyck path.
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As in the known Fuss-Catalan bounce path description, we will show that the vertical steps of Q
that are directly on the left of the vi vertical move contribute area i ´ 1 in P . More precisely, we
will show:

1. The vertical steps of Q that are directly on the left of the vi vertical move correspond to north
levels in P that belong to Ai´1.

2. The horizontal steps of Q that are directly above of the hi horizontal move correspond to east
levels in P that belong to Ai.

Denote by Ni the set of north levels in P that belong to Ai, for i “ 0, . . . , k. Similarly, denote
by Ei the set of east levels in P that belong to Ai, for i “ 1, . . . , k. We first show that Ei can be
obtained as the disjoint union

(9.3) Ei “
i´1
ď

j“0

pNj ` pi´ jqaq .

For this, note that the first north level in P that appears after an east level e P Ei should be a
north level n P Nj for some j P t0, . . . i ´ 1u, and that e “ n ` pi ´ jqa. Reciprocally, every north
level n P Nj for some j P t0, . . . i´ 1u forces the east levels ej`1, ej`2 . . . , ek to appear as east levels
in P , where ej`l “ n ` la (indeed, ej`l P Aj`l which means that ek´1 ă ak ă b “ ak ` r. Then,
all the lattice points one step below ej`1, ej`2 . . . , ek´1 are below the main diagonal). Thus, the
north level n P Nj contributes with exactly one east level e “ n` pi´ jqa in Ei.

Items 1 and 2 above are now equivalent to prove that vi “ |Ni´1| and hi “ |Ei|. Equation 9.3
implies that |Ei| “ |N0| ` ¨ ¨ ¨ ` |Ni´1|. Since hi “ v1 ` ¨ ¨ ¨ ` vi, it suffices to prove vi “ |Ni´1|.
Note that v1 is clearly the number of elements in N0, since the smallest east level of P (which
corresponds to the first east step in Q) is equal to a. Moving h1 “ v1 “ |E1| steps horizontally
covers all the east steps of Q corresponding to the east levels in P that belong to A1. Moving up v2

units from the current position hits the path at the east step corresponding to the first east level
of P that belongs to A2. This east level is exactly equal to 2a, and all the north steps on the left
of v2 in Q correspond to the north levels in P that belong to A1, that is v2 “ |N1|. In general, P
contains all east levels a, 2a, . . . , pk ` 1qa. Therefore, the initial value of Ei is equal to ia and is
smaller than all values in Ni. As a consequence the vertical move vi of the bounce path hits the
path Q precisely at the east step corresponding to the level ia of P as desired, and vi “ |Ni´1|.
This finishes the proof of the proposition and the proof of items 1 and 2. �

Proof of Proposition 9.16. The east step of Q that is reached by the vertical move vk`1 corresponds

to the east level pk ` 1qa in P . So, rδpP q is equal to the position of this east step in Q, which is
equal to |v| ` |h| ` 1. Since a ` b “ pk ` 1qa ` r and a ` b never appears as a level in P ,

then δ ď rδ ` r ´ 1 “ |v| ` |h| ` r. �

Replacing r “ 1 in Equation (9.2), we obtain.

Corollary 9.18. In the Fuss-Catalan case pa, ak`1q, the statistic δpP q is determined by the initial
bounce path of Q “ ζpP q by

(9.4) δpP q “ |v| ` |h| ` 1.

9.4. Inverse of zeta in the Fuss-Catalan case pa, ak ` 1q. As a consequence of Corollary 9.11
and Corollary 9.18 we obtain an alternative proof that the zeta map is a bijection in the Fuss-
Catalan case pa, ak ` 1q, as previously shown by Loehr in [Loe05]. Our approach is similar to the
algorithmic approach of Xin in [Xin15a].

Corollary 9.19. The zeta map is a bijection in the Fuss-Catalan case pa, ak ` 1q.

Moreover, Remark 9.10 gives us a precise simple way for computing the inverse of zeta of a
path Q. We describe this procedure by means of an example below. Let Q “ NENEENEEEE
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be the p3, 7q Fuss-Catalan path illustrated in Figure 29. In order to compute ζ´1pQq we find the
list of ζ-predecessors Q “ Q1, Q2, . . . , Ql of Q until arriving to the final path Ql containing all
the boxes above the main diagonal. Let δi be the δ statistic corresponding to the path Qi, which
can be computed from the initial bounce path of Qi as |v| ` |h| ` 1. The path Qi`1 is obtained
from Qi using Proposition 9.8. Equivalently, Qi`1 is obtained from Qi by “moving” all the north
steps on the left of its initial bounce path one step to the left whenever possible, as illustrated in
Figure 29. The inverse of zeta of the final path Ql is the initial diagonal path P0. Let γ0 “ γpP0q

be its corresponding cycle permutation, which can be computed either directly from P0 or from the
pair pQl, Qlq using the description of ι in Section 6.1. In our example,

γ0 “ p1, 8, 5, 2, 9, 6, 3, 10, 7, 4q.

If P “ ζ´1pQq, the permutation γpP q is determined by

γpP q “ ρ γ0 ρ
´1,

where ρ “ ρ1,δ1 . . . ρ1,δl´1
and ρ1,i is the permutation with cycle notation p1, . . . , iq. In our example,

ρ “ p1, . . . , 7qp1, . . . , 9qp1, . . . , 9q “ r4, 5, 6, 7, 1, 8, 9, 2, 3, 10s,

and

γpP q “ p4, 2, 1, 5, 3, 8, 6, 10, 9, 7q

“ p1,5, 3,8, 6,10,9,7,4,2q.

Replacing the cyclic descents of γpP q (when considered in one-line notation) by east steps and
the ascents by north steps we recover the path ζ´1pQq “ P “ NENENEEEEE. We have
computed the image of P under the zeta map in Figure 30 to verify that it is indeed equal to Q.

�0 = (1, 8, 5, 2, 9, 6, 3, 10, 7, 4)

1

2

3

4 5 6 7 8 9 10

1 2 3 4 5 6 7

8

9

10

v = (1, 1, 1), h = (1, 2), �1 = 7 v = (2, 1, 0), h = (2, 3), �2 = 9

v = (2, 1, 0), h = (2, 3), �3 = 9

Q

Figure 29. ζ-predecessors and corresponding δ statistics of a Fuss-Catalan path Q.
The dotted lines are the corresponding initial bounce paths. ζ´1pQq is the path
whose east steps correspond to the cyclic descents of the permutation γ, obtained
by conjugating γ0 by the cycles ρ1,δi .
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