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Abstract. In the method of successive sampling, a sample of n distinct units is drawn
from a population of N units one at a time. Each unit i is drawn with a fixed selection
probability pi and any repeated units are ignored. When the pi are proportional to a given
size measure, this is called probability proportional to size without replacement (PPSWOR).

The first order inclusion probabilities πi of each unit in a PPSWOR scheme are not
proportional to the size measure, as proved in Kochar and Korwar (2001). This article
discusses a modification to the selection probabilities which creates a successive sampling
scheme where first order inclusion probabilities are proportional to size (IPPS) in the case
when n = 2.

1. Background

A sample of size n is to be taken from a finite population of N distinct units, {u1, . . . , uN}.
In the method of successive sampling, we draw units one at a time from the population, with
replacement, where each unit ui is chosen with a fixed selection probability pi (

∑N
i=1 pi = 1).

Repeated elements are ignored and the draws stop when n distinct elements have been
chosen. An example is provided in Section 2. For more on the theory of successive sampling
and other sampling techniques, see Hájek’s [3]. We denote by p = (p1, . . . , pN) the vector of
selection probabilities.

For each unit ui of the population, πi denotes the probability that ui is a member of a
chosen sample, the first order inclusion probability of ui. Because each sample is of size n, it
follows that

∑N
i=1 πi = n. We denote by π = (π1, . . . , πN) the vector of first order inclusion

probabilities. Kochar and Korwar [4] show that p is equal to π/n only in the case when
pi ≡ 1/n; in all cases the vector π/n is majorized by p. That is, after sorting π/n and p from

largest to smallest, the respective partial sums satisfy
∑j

i=1(πi/n) ≤ ∑j
i=1 pi for 1 ≤ j ≤ N .

An interesting case of successive sampling is when the probabilities pi are proportional
to some size measure xi > 0 for each unit ui; we have pi = xi/

∑N
i=1 xi. This sampling

technique called probability proportional to size without replacement (PPSWOR). Kochar
and Korwar’s result shows that in all non-trivial examples of PPSWOR, the first order
inclusion probabilities are not proportional to the size measure; this is borne out in our
example in Section 2. Rao et al.’s [5] investigates the relationship between p and π when
slight modifications are made to certain selection probabilities pi.

Sampling schemes in which the first order inclusion probabilities are proportional to the
size measures are called IPPS, or inclusion probability proportional to size. One example
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of an IPPS sampling scheme is the modified rejective sampling method of Sampford [7],
a generalization of the ideas of Durbin [2]. Sampford’s method first selects one unit ui

with probability πi/n; all successive units ui are drawn with replacement with probabilities
proportional to πi

1−πi
. While the first order inclusion probabilities are proportional to the

given size measure, the modification of selection probabilities after drawing the first unit
seems less natural than the method of successive sampling.

Of recent interest also include the order sampling schemes (including the Pareto design)
introduced by Rosén [6], in which the first order inclusion probabilities πi approximate
desired inclusion probabilities. Traat et al. [8] discuss and compare Sampford, Pareto, and
other sampling schemes, including their first order and second order inclusion probabilities
and design correlations.

The origins of this letter are in mathematical models of social networks. The goal was a
simple algorithm to model the arrival of a newcomer into a network; the newcomer would
become mutual friends with a fixed-size subset of existing members with inclusion probability
proportional to their popularity, as suggested by Barabási and Albert [1] and others. In
this letter we investigate whether it is possible to modify the unit selection probabilities
to guarantee that that the method of successive sampling gives samples of size two with
certain first order inclusion probabilities. In Section 3 we give explicit formulas for modified
probabilities in the case of N = 3, and in Section 4 we give a method which allows for
calculation of such probabilities for N > 3.

2. Motivating Example

Suppose we wish to select a sample of size two from the population {u1, u2, u3}, where
x1 = 4, x2 = 3, and x3 = 2. If we use successive sampling with probability vector p =(

4
9
, 3

9
, 2

9

)
, then the first order inclusion probabilities are as follows.

u1 first, u2 second: 4
9

3
5

= 4
15

u2 first, u1 second: 3
9

4
6

= 2
9

u1 first, u3 second: 4
9

2
5

= 8
45

u3 first, u1 second: 2
9

4
7

= 8
63

u2 first, u3 second: 3
9

2
6

= 1
9

u3 first, u2 second: 2
9

3
7

= 2
21







π1 = 50
63

≈ 0.794

π2 = 73
105

≈ 0.695

π3 = 23
45

≈ 0.511

We remark that π/2 is indeed majorized by p.
If instead we use successive sampling with the modified selection probabilities p′1 ≈ 0.572,

p′2 ≈ 0.263, and p′3 ≈ 0.165, then the new first order inclusion probabilities are π′
1 = 8

9
,

π′
2 = 6

9
, and π′

3 = 4
9
, as desired. The exact values for p′1, p′2, and p′3 are roots of certain

polynomials which are explicitly provided in Section 3.

3. Exact modified selection probabilities when n = 2, N = 3

The existence of p′1, p′2, and p′3 in the previous example is not a coincidence. When N = 3
and n = 2, it is always possible to find modified selection probabilities p′1, p′2, and p′3 such
that when successive sampling is performed with these selection probabilities, the desired
first order inclusion probabilities are achieved.

Theorem 1. Suppose that q1, q2, and q3 are the desired inclusion probabilities, real numbers
between zero and one which satisfy q1 + q2 + q3 = 2. Then there exist modified selection
probabilities p′1, p′2, and p′3, exact values for which are given below, such that when applying
successive sampling to the population {u1, u2, u3} with these modified selection probabilities,
the first order inclusion probabilities are indeed π1 = q1, π2 = q2, and π3 = q3.
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Proof. Given selection probabilities p′1, p′2, and p′3, the corresponding first order inclusion

probabilities are π1 = p′1 +
p′1p′2
1−p′2

+
p′1p′3
1−p′3

, π2 = p′2 +
p′1p′2
1−p′1

+
p′2p′3
1−p′3

, and π3 = p′3 +
p′1p′3
1−p′1

+
p′2p′3
1−p′2

. We

also have that p′1 + p′2 + p′3 = 1. Solving this set of equations with the help of a computer
algebra system1, we determine that p′1 is a root of the quartic polynomial q1(x):

q1(x) = x4(π2π3) − x3(1 − π1)(π2 + π3 + π2π3) + x2
(
(1 + π1)(1 + π2)(1 + π3) − 4

)
+(1)

x(1 − π1)(1 − π2)(1 − π3) + (π1)(1 − π2)(1 − π3)

that p′2 is a root of the quartic polynomial q2(x):

q2(x) = x4(π1π3) − x3(1 − π2)(π1 + π3 + π1π3) + x2
(
(1 + π1)(1 + π2)(1 + π3) − 4

)
+(2)

x(1 − π1)(1 − π2)(1 − π3) + (1 − π1)(π2)(1 − π3)

and that p′3 is a root of the quartic polynomial q3(x):

q3(x) = x4(π1π2) − x3(1 − π3)(π1 + π2 + π1π2) + x2
(
(1 + π1)(1 + π2)(1 + π3) − 4

)
+(3)

x(1 − π1)(1 − π2)(1 − π3) + (1 − π1)(1 − π2)(π3).

Each quartic does have a root between zero and one for all valid values of π1, π2, and π3.
We can see this as a result of the intermediate value theorem; take as an example the first
quartic: q1(0) = π1(1−π2)(1−π3) is always positive and q1(1) = 2(π1−1) is always negative
for non-trivial values of π1, π2, and π3. �

For π1 = 8/9, π2 = 6/9, and π3 = 4/9 as in our motivating example, after clearing
denominators, Theorem 1 gives that p1 is a root of 72x4−38x3−133x2+5x+40, approximately
0.572, p2 is a root of 96x4 − 140x3 − 133x2 + 5x + 10, approximately 0.263, and p3 is a root
of 144x4 − 290x3 − 133x2 + 5x + 4, approximately 0.165.

4. Calculating modified selection probabilities when n = 2, N > 3

In this section we introduce a method for calculating the modified selection probabilities
when n = 2 and N > 3. Solving a system of equations for an exact value, as in the proof
of Theorem 1, requires a large amount of computing power. Already when N = 4, the
exact values for the modified selection probabilities are roots of a polynomial of degree 11!
We present a modified method that, while still computationally intensive, will allow for
straightforward calculation of approximations for these modified selection probabilities.

Theorem 2. Suppose that q1 through qN are the desired inclusion probabilities, real numbers
between zero and one which satisfy q1 + · · · + qN = 2. Then through the method described
below, we can calculate modified selection probabilities p′1 through p′N such that when applying
successive sampling to the population {u1, . . . , uN} with these modified selection probabilities,
the first order inclusion probabilities are indeed πi = qi for all i.

Proof. Notice that for all i, πi = p′i
(
1 +

∑
j �=i

p′j
1−p′j

)
. If we let S = 1 +

∑N
i=1

p′i
1−p′i

, then we

see that S = πi

p′i
+ 1

1−p′i
for all i. From this, we have N − 1 equations π1

p′1
+ 1

1−p′1
= πi

p′i
+ 1

1−p′i

1A copy of the Mathematica code with these and all other calculations is available directly from the
author’s website, http://qc.edu/~chanusa/papers.html.
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for 2 ≤ i ≤ N . Solving each equation for p′i and substituting the result into the equation∑N
i=1 p′i = 1 implies that p′1 can be calculated as a solution to the following equation.

(4)

p′1+
N∑

i=2

[(
p′21 + π1 − p′1π1 + p′1πi − p′21 πi

2 (p′1 + π1 − p′1π1)

)
−

√(
p′21 + π1 − p′1π1 + p′1πi − p′21 πi

2(p′1 + π1 − p′1π1)

)2

+
−p′1πi + p2

1πi

p′1 + π1 − p′1π1

]
= 1.

Back substitution gives us the values of p′i for 2 ≤ i ≤ N . �

For example, if π =
(

6
11

, 4
11

, 4
11

, 3
11

, 3
11

, 2
11

)
, then solving Equation (4) for p′1 gives p′1 ≈

0.2988; consequently, p′ ≈ (0.2988, 0.1788, 0.1788, 0.1297, 0.1297, 0.0842). We see once again
that π/2 is majorized by p′.

5. Discussion

If we wish to evaluate our sampling scheme, we might aim to compare it alongside those in
Traat et al. [8] in which samples of size 3 are chosen from a population of size 6, and where
π =

(
2
3
, 2

3
, 2

3
, 1

3
, 1

3
, 1

3

)
. By solving the appropriate system of equations, we can determine

that a successive sampling scheme with modified selection probabilities of approximately
p′ = (0.239, 0.239, 0.239, 0.095, 0.095, 0.095) will generate samples with the desired first order
inclusion probabilities.

As such, in the comparison with the Sampford and Pareto designs, the first order inclusion
probabilities for our and Sampford’s designs are exact, while for the Pareto design, π1 =
π2 = π3 ≈ 0.67232 and π4 = π5 = π6 ≈ 0.32768. The second order inclusion probabilities
are compared in Table 1 and the design correlations are compared in Table 2. We can see
that all these comparison statistics for our method are in excellent agreement with those for
the Sampford and Pareto schemes.

this article Sampford Pareto
i, j = 1, 2, 3; i �= j 0.404122 0.40252 0.41124
i, j = 4, 5, 6; i �= j 0.070789 0.06918 0.06661

i = 1, 2, 3; j = 4, 5, 6 0.175030 0.17610 0.17405
Table 1. A comparison between our method and the Sampford and Pareto
methods, of second order inclusion probabilities for samples {ui, uj} ⊂
{u1, . . . , u6}.

this article Sampford Pareto
i, j = 1, 2, 3; i �= j −0.18145 −0.18868 −0.18506
i, j = 4, 5, 6; i �= j −0.18145 −0.18868 −0.18506

i = 1, 2, 3; j = 4, 5, 6 −0.21237 −0.20755 −0.20996
Table 2. A comparison between our method and the Sampford and Pareto
methods, of design correlations for samples {ui, uj} ⊂ {u1, . . . , u6}.

The calculations in Sections 3 and 4 show that it is possible to create a successive sampling
scheme which will generate desired first order inclusion probabilities when n = 2. The
calculations required are more computationally demanding than those of Sampford, which
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means that a decision to implement this method should be weighed against the increase in
computation time.

The author expects that future research in this subject will provide a successive sampling
scheme which ensures desired first order inclusion probabilities when n > 2, as summarized
by the following conjecture.

Conjecture 3. Suppose that π1, . . . , πN are real numbers between zero and one which satisfy
π1 + · · ·+πN = n. Then there exist modified selection probabilities p′1, . . . , p

′
N such that when

applying successive sampling to the population {u1, . . . , uN} with these modified selection
probabilities, the first order inclusion probabilities are exactly π1, . . . , πN .
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