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Chapter 1
INTRODUCTION

The subject area of my work is the study of enumeration of tilings of regions, or equiv-
alently matchings of certain bipartite graphs. In Chapter 1 of this paper, I present a brief
history of the subject. In Chapter 2, I specify the general aim of my research and define the
idea of Aztec Pillows. In Chapter 3, I present some preliminary results. Lastly, in Chapter
4, T expose various open questions in the vein of the research. Research questions that arise
will be presented throughout the paper as they become posable.

1.1 Tilings and Matchings

Throughout this paper, we will be enumerating the number of complete tilings of regions
with dominoes. In general, consider any tiling of the plane with polygons. We consider a
diform to be the union of two adjacent polygons. In the particular case when the polygons
are all squares, these diforms are called dominoes. As an example, consider a chessboard.
A domino will be the union of two adjacent squares.

A tiling of the region will consist of an arrangement of non-overlapping diforms which
cover all polygons on the board. In our example, this implies that we use 32 non-overlapping
dominoes to cover the chessboard.

Another way to think of a complete tiling of the region is to consider a perfect matching
of the dual graph of the region (excluding the outer face). In our chessboard example, we
have 64 vertices which represent the squares of the chessboard, and 112 edges representing
the adjacencies of the squares. We wish to count the number of ways that 32 of these edges
form a perfect matching. In terms of this research, we shall never create a partial matching,
so after now any reference to a “matching” is a reference to a “perfect matching”.

In this paper, to abbreviate “the number of tilings of” in formulas, I will use # notation,
as in #AZ,. This notation appears in [22] by Pachter.

1.2 History

The problem in its current form originated in physics and chemistry in the 1930’s [25].
Physicists were looking for a model of the liquid and gaseous states, by considering diatomic
molecules (dimers) as edges in the square lattice. For this reason, the model is sometimes
called the dimer model. Chemists were interested in aromatic hydrocarbons; hydrocarbons
form a honeycomb grid, and double bonds need to be placed in this lattice such that each
vertex has exactly one double bond attached to it. (See Figure 1.1 for examples of these
graphs.)
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Figure 1.1: Rectangular Board and Honeycomb Graph

Progress was made with the infinite square grid mid-century, as Kasteleyn was able to
count the number of tilings of a rectangular region as well as the associated torus. Given
an n X m board, with both n and m even, there are

n/2m/2

j k
H H 4 cos® it/ + 4 cos? l
n+1 m+1

j=lk=1

domino tilings of the board [14]. This result involves products of cosines and is not obviously
an integer. If we consider only the one-parameter family of graphs that is an 2n x 2n
subgraph S,, of the infinite square lattice, we see that its formula has even more structure,
being either a perfect square or two times a perfect square.

Using Galois Theory, you can prove that it is an integer [4], but this is less than appealing.
The region seems “nice”, so there should be a simple proof of this result. In 1996 Pachter
[22], based on work by Ciucu [5], found a nice way to decompose the square region S, into
two congruent regions H, and prove combinatorially that #S, = 2"(#H,)?. This result
is much more satisfactory, because it explains the formula much more clearly than just
“a perfect square or two times a perfect square”. As for the general rectangle case, the
formula becomes no simpler, but thanks to Percus [23] can be proved using determinants
by exploiting the bipartite nature of the graph instead of with the Pfaffian method that
Kasteleyn used initially.

As for the honeycomb grid, it has been studied in depth as well. For a combinatorialist,
the most interesting aspect about the matchings on a honeycomb grid or lozenge tilings of
a hexagon is their many combinatorial forms. They relate to plane partitions and thus to
solid Young diagrams [6, 9]. Lozenge tilings of an equiangular hexagon with side lengths
(@, b, c) are in one to one correspondence with a solid Young diagram on [0, a] x [0, b] x [0, c|.
This correspondence can be understood visually by thinking of unit cubes fitting inside a
box of size a X b X ¢, and looking at the box from a point far away, gives the appearance of
a hexagon with rhombi tiling it. For an example of this visualization, see Figure 1.2.

At MIT in the 1990’s, Jim Propp organized the Undergraduate Research Project in Ran-
dom Tilings. (Archived website: http://www.math.wisc.edu/ propp/tiling/www/). The
goal of this program was to understand more fully random tilings of Aztec diamonds (see
next section) and other regions. This program had over 50 participants in its five years,
including Henry Cohn. After moving to the University of Wisconsin, Jim Propp wrote a
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Figure 1.2: A Lozenge Tiling on a Triangular Grid and the Associated Plane Partition

survey paper on diform tilings in 1999. This survey included a summary of research in
this field and thirty-two problems to answer [25]. This is the paper to read if you want
more information about diform tilings and the lines of research considered. In addition, Jim
Propp maintains a mailing list focusing on domino tilings. With all this organization, the
domino tiling community is well established.

1.3 Current Lines of Approach

When rectangular regions were first considered, they were chosen for study because they
seemed to be the most natural regions — the regions that would minimize edge effects
on tilings. Another region proved to be much simpler to explain, however. In the 1980’s,
physicists Grensing, Carlsen, and Zapp presented a regularly bounded region that had
a nice formula for its number of tilings, but gave no proof of the formula [11]. Later,
mathematicians Elkies, Kuperberg, Larsen, and Propp [8] rediscovered this region and gave
four proofs of the formula

#AZ, =2 t1/2, (1.1)

This region was called the Aztec diamond (see Figure 1.3 for an example), denoted by AZ,,
where n is the number of steps. We define a “step” to be a movement upward along one
square, followed by right movement until the next step begins. (This clarification will be
more important in later sections.)

One reason why this region is believed to have such a nice formula is because of the
restrictions the edge effects have on the type of tilings that appear in this region. In
particular, it has to do with a height function along the boundary. After coloring the Aztec
diamond like a chessboard so that the left-most square in the upper row is black, you can
consider the height of a tiling to be increasing incrementally if you follow edges of a black



Figure 1.3: An Aztec Diamond (AZ,) and its Associated Height Function
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Figure 1.4: A Fortress and Its Diforms

square clockwise or those of a white square counterclockwise (and decreasing if you change
directions). In an Aztec diamond, these values steadily increase as you go up the top left
diagonal (see Figure 1.3), so that between the top to the bottom of the Aztec diamond there
is a very large difference in height, putting extra restrictions on the tiles that can be placed
in the region.

For a nice visualization of how height functions restrain tilings, see the Monthly article
by Thurston [31]. Height functions also arise in the honeycomb grid; they basically come
from the height of blocks in the plane partition corresponding to the tiling. For more
information on height functions, see [6, 15, 27].

Diform tiling regions whose diforms are not always congruent are also studied. One
example of such a region is called a fortress (see Figure 1.4).

One common aspect to all these regions is that the graphs are all bipartite. Limited
research has been done in the non-bipartite case, but it is also based on matrix methods
introduced by Kasteleyn.



1.4 Proof Techniques

Various useful techniques have been created by the domino community, and we are always
on the lookout for more.

In counting matchings on graphs directly, sometimes it is useful to reduce one graph
to another whose number of tilings is known. A tool in this vein is called Urban Renewal,
presented by Jim Propp [26]. It uses the idea that you can replace one set of eight weighted
edges by another set of four differently weighted edges, and when you count the weighted
matchings of the first graph, it equals the number of weighted matchings of the second
graph. This is a nice combinatorial technique that sometimes proves useful.

Kasteleyn uses 0-+1-4% matrices in his work, a technique that is the basis for much work
in the subject. Helfgott exploits this in his bachelor thesis work, and his result is presented
in Section 3.2. Kuperberg uses representation theory in his 1998 and 2001 articles [18, 19].
Jockusch uses combinatorial methods that exploit 2-fold and 4-fold rotational symmetry in
his 1994 article [13]. Ciucu uses matching generating functions in graphs with reflective
symmetry in his 1996 article [5]. Kuo uses graphical condensation in his 2003 article [17].

A number of tools that have been created to take advantage of the bipartite nature of
the graph. One that I used many times is called vaxmacs, a customized emacs environment
written by David Wilson, into which you input a graph. This graph is written in VAX
format, so called because it is full of V’s, A’s, and X’s. It passes the corresponding Kasteleyn
matrix to Maple, which takes the determinant, giving the number of tilings of the region.
All the above types of graphs are representable in VAX-code, so creating a sequence of
graphs to feed into vaxmacs makes data collection easier. The software and documentation
for vaxmacs can be found at http://www.math.wisc.edu/~propp/software.html.

Once one collects the data, it is nice to be able to find a pattern in the data, and a
couple of options are available to that end. The most famous is the On-Line Encyclopedia of
Integer Sequences ([28]), but a second option exists in a Mathematica program called RATE
(German for guess), where you can input the first terms of a sequence, and it will guess the
next terms. The code can be found at http://www.mat.univie.ac.at/ kratt/rate/rate.html.
Combinatorial arguments from Concrete Mathematics [10] and Proofs That Really Count
[3] have been especially useful in the proofs I provide.



Chapter 2

PROBLEM STATEMENT

In this chapter, we define the object whose domino tilings we enumerate, and explain
some tools that we will use in future chapters.

2.1 Aztec Pillows

An Aztec pillow, as it was initially presented in [25], is a rotationally symmetric region in
the plane that has side constraints like those of Aztec diamonds. On the top left diagonal
however, the steps are comprised of three squares to the right for every square up. As an
example, Figure 2.1 presents a 2 mod 4 pillow of order 4 and a 0 mod 4 pillow of order 5.
The “mod” has to do with the number of tiles there are in the top row of the pillow, and
the “order” has to do with how many steps are taken.

Aztec pillows were singled out as interesting regions because the number of tilings is
conjectured to be a larger number squared times a smaller number with a simple generating
function. For 0 mod 4 pillows, the generating function is

(5+3z 4 2% —2%) /(1 — 2z — 22 — 223 4 2*), (2.1)
while for 2 mod 4 pillows it is

(5 + 6z + 322 — 223) /(1 — 2z — 22 — 22 + o). (2.2)
See Appendix A for a table of values.

Aztec pillows are also the next natural region when considering height functions, since
the height function increases as you climb each step. (See Figure 2.2.)

Figure 2.1: Two Aztec Pillows



Figure 2.2: The Height Function for an Aztec Pillow

2.2 A Generalization

After exploring a while, I realized that these 0 mod 4 and 2 mod 4 pillows are just a special
case of a larger family of pillows, and that maybe writing 0 mod 4 and 2 mod 4 did not
capture the information necessary to explain the pillows completely. In particular, taking
the height function as a clue, why not allow a pillow to be any region whose height function
increases with each step it takes. This means that every step will be composed of following
a square up and an odd number of steps to the right, and we should make this object
rotationally symmetric (by a rotation of 180 degrees). For the moment, we only consider
stepping down from the upper plateau by single steps.

To take into account all of this information, we can reference this object by a vector of
the odd step lengths and an extra index to clarify the length of the vector. We subtract 1
from the length of the top plateau so that the last entry in the vector is odd as well. For
example, the 0 mod 4 pillows of order n are of the form (3,...,3,3),, while the 2 mod 4
pillows are written (3,...,3,1),. We will call these two nice cases 3-pillows, as we will call
vectors of the form (5,...,5,%),, where i € {1,3,5}, the 5-pillows, and define other odd-
pillows similarly. Through experimental calculations using vaxmacs and Maple, it appears
that 3-, 5-, and 7-pillows all share the form of a smaller number times the square of a larger
number, but as of yet T have not found a linear recurrence for these values of degree 10 or
smaller.

This more general definition of an Aztec pillow (with arbitrary odd vectors) leads to the
broad aim of my research:

Find a general theory of Aztec pillows.

What does this mean? Well, we would like to understand fully the number of tilings
of these regions, searching for an explicit structure of such a value. As the reader will see
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Figure 2.4: Creating an Aztec Pillow from an Aztec Diamond

in Section 3.3, I think the structure is much stronger than just some smaller number times
some larger number squared.

2.3 Useful Constructions

Along the way, we need some tools. In particular, we need a coordinate system to be able
to refer to specific blocks in the pillow. For an illustrating example, consider the Aztec
diamond of order 4 in Figure 1.3. We will label and give coordinates to both the black and
white squares as shown in Figure 2.3. In general, for the Aztec diamond of size n, there
are n(n + 1) squares of each color. The coordinates (z,y) of white squares satisfy all values
1<z <n+1,and 1 <y < n; whereas the coordinates (z',%') of black squares satisfy all
values 1 <z’ <nand 1<y <n+1.

Giving coordinates to an Aztec diamond is useful because placing dominoes in Aztec



diamonds yields Aztec pillows. One needs not place many dominoes to arrive at a pillow.
For example, in Figure 2.4, we see how to create the pillow from Figure 2.1(a) using AZ7
and 3 pairs of dominoes (the ones that are darkly shaded). The lightly shaded dominoes
are the dominoes that are forced by the placement of the darker dominoes and thus would
be included in any tiling of AZ7 that includes the darker dominoes.

In general, if n is odd, you need n — 1 dominoes to restrict AZ,, to a 2 mod 4 3-pillow of
order (n—1)/2, and if n is even, you need n dominoes to restrict AZ,, to a 0 mod 4 3-pillow
of order n/2.

Another tool that we will use are the binary Krawtchouk polynomials. (See [16, 20].)
A Krawtchouk polynomial kr(j,n,k) is the coefficient of 7 in the polynomial expression
(1 —z)k(1 + )"k

Some useful manipulations that Krawtchouk polynomials satisfy include:

kr(a,n,c) = (—1)kr(n — a,n,c), (2.3)
kr(a,n,c) = (—-1)*kr(a,n,n — c), (2.4)
which are useful for symmetric arguments,
kr(a,n,c) = kr(a — 1,n — 1,¢) + kr(a,n — 1,c¢), (2.5)
which is useful for recurrences, and
n
Z kr(a,n, ) kr(i,n,b) = 642", (2.6)
i=0

which exhibits one of their orthogonality properties. These are all taken from [16].
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Chapter 3
PRELIMINARY RESULTS

Now I have my quest. But how to go about it? Up to now, experimental combinatorics
has been useful everywhere! I first use vaxmacs and MAPLE to come up with some data,
then I use The On-Line Encyclopedia of Integer Sequences [28] to come up with some
conjectures, and then I need some way to prove them. Since this is a counting question, I
would hope to answer it in a purely combinatorial way; I present the limited results in this
vein in Section 3.1. Next, I made use of Harald Helfgott’s Theorem [12] (see Equations 3.2
and 3.3) to prove a family of results, and it continues to be useful daily.

3.1 A Combinatorial Approach to #(1,...,1,3),

I tried to approach this problem in a purely combinatorial way. When I did so, I didn’t get
too far. I was able to quickly prove a formula for #(1,...,1,3),, but the #(1,...,1,3,1),
case was elusive, and any further case seemed unlikely, but my approach may need to be
retooled.

If you consider the region R = (1,...,1,3),-1, you can think of it as the Aztec diamond
AZ, with a horizontal domino forced in the top and bottom positions. There is a nice
combinatorial argument to prove the formula for #R.

Consider tiling AZ, in any way. You can do this in 2?("*1)/2 ways, by Equation 1.1.

On the other hand, you could break down the number of tilings of AZ,, into cases. You
could place a horizontal domino in both the top and bottom rows. You can do this in #R
ways. Otherwise, there would be some vertical tile in either the top or the bottom rows.
By Inclusion-Exclusion, we can count the number of ways to tile AZ,, with some vertical
tile in the top row, add the number of ways to tile with some vertical tile in the bottom

- i I i Il

.- i I

Figure 3.1: Combinatorial Proof of #(1,...,1,3), Formula
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row (each produces an AZ, 1), and subtract the overcounting of the cases when you place
vertical dominoes in both the top and the bottom rows of AZ,,, which results in an AZ, _,.
(See Figure 3.1.)

This implies that

#(1, o], 3)n—1 _ 2n(n+1)/2 _9. 2(n—1)n/2 +2(n—2)(n—1)/2 _ 2(n—1)(n—2)/2 (22n—1 —on 4 1) )

(3.1)

Trying to use the same approach for (1,...,1,3,1),—1 runs into problems because the
resulting regions do not decompose into Aztec diamonds.

3.2 Helfgott’s Theorem

Another way to proceed has a linear algebraic flavor to it.

Given a subregion S of a tiling region R such that the complement R\ S of S in
R is tilable, Rick Kenyon wrote an article that explained how to calculate the ratio of
#(R\ S)/#R [15]. In particular, S must be made up of an equal number of black and
white vertices. The basic idea is that a certain subdeterminant of the inverse of a Kasteleyn
matrix gives this ratio, so if you know how to calculate the entries of this matrix, you can
calculate the ratio #S/#R with relatively few calculations.

In his Bachelor thesis [12], Harald Helfgott calculated what these matrix entries are for
when R is the Aztec diamond. In this way, using the coordinate system from Figure 2.3,
he proved that there is a formula involving a determinant for the ratio of the number of
tilings of the restricted region over the number of tilings of the Aztec diamond. He gives
the following result:

The probability of a pattern covering white squares vy, . .., vg, and black squares
w1, ..., w; of an Aztec diamond of order n is equal to the absolute value of
lc(vi, w;j)|ij=1,..k- The coupling function c(v,w) at white square v and black
square w is

z;i—1

27" Z kr(janayi - 1) kI'(y,: - 1’n - 1an - (.7 + "I’.; - ‘T’l)) (32)
§=0
for =i > z; and

n
=273 ke(Gny - Dke(yi—Ln—Ln—(j+2j-z)  (3.3)

J=z;

for z; < z;, where (z;,y;) and (z},y;) are the coordinates of v and w in the
coordinate system in Figure 2.3, and kr(j,n, k) is the Krawtchouk polynomial.

This coupling function is hard to work with but it has some nice properties. The coupling
matrix that arises from the placement of dominoes to form an Aztec pillow has a particularly
nice form.
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Figure 3.2: A Positively Rotationally Sign Alternating Matrix

3.3 Rotationally Sign Alternating Matrices

First, a definition:

Definition: If an n X n matrix (a; ;) has entries that satisfy a; ; = (—1)"an11-int1-j,
we call this a positively rotationally sign alternating matrix. Ifa; ; = (=1)" la, 1 01,
we call this a negatively rotationally sign alternating matrix. In either case, these ma-
trices are called rotationally sign alternating.

For an example of such a matrix, see Figure 3.2. Another characterization of rotationally
sign alternating matrices is that a matrix M is of this form if and only if HMH = £+ M,
where H is the matrix with alternating 1’s and —1’s along the cross diagonal. These
matrices are a subclass of the generalized centrosymmetric K-matrices studied in [1, 30],
and are related to centrosymmetric matrices introduced in [21] and widely discussed (see
e.g. [32]).

Theorem 1. The coupling matriz of an Aztec pillow is rotationally sign alternating.

Proof: An Aztec pillow can be derived from an Aztec diamond by a placement of
dominoes that is symmetric with respect to a rotation by 180 degrees. In essence, this
means that for every white square in position v; = (z1,y;) and black square in position
wi; = (z),y]) in the coordinates of Figure 2.3, there is a white square in position vy =
(n+1—21,n+2—1y;) and a black square in position we = (n +2 — z},n+ 1 —y}). (Note
that we do not require v; and w; to be in the same domino.)

Given this relation, we can calculate the relationship between c(vi,w;) and c(vg, ws).
Without loss of generality, assume that 2} < z1 (or else switch the v;’s and w;’s). This
implies that —z1 < —z/, which implies that zo =n+1— 121 < n+2 — 2z} = 7}, so we know
which of Equations 3.2 or 3.3 we need to apply in the various cases.
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Making extensive use of Equations 2.3 and 2.4, we have

n—xi

C(U21w2) = 27" Z kr(jan7n+1_yl)kr(n_yian_lan_(j+(n+2_x,1)_(’n’+1_$1)))
j=0
n—=ri
= 2" Z kr(j,n,n —(y1 — 1)) kr(n —1— (¥} = 1),n—1,n—1—(j — 2| +z1))
Jj=0

= 27" ) kr(n—jnn—(p -k —1- () —1),n—Ln—1—(n—(j+a) — 1))

Jj=x1
= 2 3~ D (1) k(g — 1)

j=z1

()N 1) by — 1 — 1 — (42} — o)

= (w9 Y (o, — 1 ke(y, — 1o — 1,n— (j + o — a1))

J=r

=y oy, wy).

Notice that for v; = (z;,y;) and w; = (z},y), we have that

(_1)zi+yi+w}+y} - 1. (_1)zi+yi+$'2d+1—j+ylzd+1—j

and therefore for fixed v;, the sequence Q(j) = (—1)%¥%¥%*Y is antisymmetric, in that
Q(j) = —Q(2d + 1 — j). Therefore we can relabel the vertices w; such that the sequence
Q(j) becomes (1,—1,...,1,—1) by exchanging w; and wyq441—; if necessary. Relabeling the
vertices v; in the same way gives us that (—1)%*% = (—1)? and (~1)%*% = (—1)/. This
means that Equation 3.4 implies that the entries in the newly indexed coupling matrix
satisfy asqi1-i2at+1-j = (—1)"""a;;, implying that the coupling matrix is rotationally
sign alternating, being either positive or negative depending on the value of n. .

Since we now know that coupling matrices are rotationally sign alternating 2k x 2k
matrices, we can see if they have any nice properties. Using Maple, I determined that the
absolute value of the determinant of the 2 x 2, 4 x4, 6 x 6, and 8 x 8 matrices all decompose
nicely into the sum of two squares, and the pieces that are squared are sums of k x k
submatrices. In addition, both types of rotationally alternating sign matrices decompose in
this fashion because they differ only by a factor of —1 in each of the last &k rows. We have
a predictable formula for this sum of two squares.

Here is a construction to be able to explain the formula. We define a set of k-member
subsets of [2k]. Take a subset I of [k]. Create I by taking TUI', where i € I' if 2k +1—i €
[k] \ I. In this way, each I has k members. We will define the sets A, A’, B, and B’ of

(3.4)
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subsets of [2k]. If T has ¢ elements,

A ifZ=0 mod 4,
if/=1 mod 4,
if =2 mod 4, or

B'" if£=3 mod 4.

place I into set

Given a 2k x 2k matrix N, we define M (I) to be the k x k submatrix of N with columns
restricted to j € I, and rows restricted to the first k£ rows of N.

Conjecture 1. The formula for the determinant of a positively rotationally sign alternating
matriz R is

2 2

det R= | det(M(I)) = > det(M(D)| + |>_ det(M(I)) = > det(M(I))| . (3.5)

IcA TeA IeB IeB’

As an example, the 4 x 4 matrix formula is as follows:

a b c d ) )
det Z _fg ;{ _he — [det (; Z)—det (Z ?)} -I-[det (Z ;>+det (; Z)] .
—d ¢ -b a

(3.6)
Note that up to sign, the same formula holds for negatively rotationally sign alternating
matrices.

Question 1. Can I prove Conjecture 17

Question 2. In general, what more can we say about rotationally sign alternating matrices?

Of course, we are not only concerned with the general case, since we want to look at the
specific case of Aztec pillows. When we look at each of the two subdeterminant sums, we
see that they each have many factors in common. If we go back to the reason why Aztec
pillows were considered “nice”, we remember that the number of tilings of Aztec pillows
was a small number times a large number squared (S x B?). Tt appears that B is a factor of
each of the two subdeterminant sums, which would go a long way in explaining the formula
that Propp wanted to have understood in [25]. So a logical question is:

Question 3. In the specific case of any Aztec pillow AP, does the rotationally nice matriz
associated with AP help us to understand the value of #AP?
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3.4 Calculating #(1,...,1,3), using Helfgott’s Theorem

The simplest application of Helfgott’s theorem is when there are only two dominoes restrict-
ing positions in the Aztec diamond. One example of those cases is when the dominoes are
placed at the very top and bottom of AZ,. In this case, we find the region (1,...,1,3),, of
which we calculated the number of tilings in Section 3.1. We can now verify this formula
independently with the matrix method.

We calculate (1,...,1,3),-1. The coordinates from Figure 2.3 of the white and black
squares covered by the dominoes (cells numbered 1 and n(n + 1) in AZ,) are:

(z1,51) = (1,1) (z1,91) = (1,1)
(z2,92) = (n,m+1)  (ah,5) = (n+1,n)
This implies that the formulas for calculating the values c(v;, w;) are as follows:

For ¢(v1,w), we note | < z1, so we apply 3.3:

clo,w) = =27 ke(j,n,0) ke(0,n — 1,n — j)
j=1

- ()

= -2 2" -1)

For ¢(v1,ws), we note =, > z1, so we apply 3.2:

0
c(vy,wg) = 27" Z kr(4,n,0) kr(n — 1,n — 1, —3)
j=0
= 27"kr(0,n,0) kr(n —1,n —1,0)
= 27"(1-1)

We can now use Equation 3.4 to establish that the determinant of the Helfgott matrix
for (1,...,1,3)p—1 is
—27"(2" — 1) 2—n
-2 (=" 2 (=) - 1)
This will be the probability that the dominoes are placed in the top and bottom positions
of the Aztec diamond. This was to be expected because we calculated combinatorially (in
Section 3.1) the number of tilings of (1,1,...,1,3),_1 to be 2>~ 1N(M=2)/2(92n—1 _9gn 4 1)
With this information, we expect the above probability to be

=272"[(2" —1)® +1]. (3.7)

B(L1. 13 20-DE-2/2(mo1 _gn ) y

H#AZ, o on(n+1)/2 (3.8)
2n(n+1)/22—2n(22n _ontl 2)

- on(n+1)/2 (39)

= 27 [(2" - 1)* +1]. (3.10)
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]

Figure 3.3: A (1,3,1,1,1)5 pillow from AZg

3.5 Calculating #(1,...,1,3,1,.%.,1),, Using Helfgott’s Theorem

Another region that is determined by the placement of only two dominoes is a pillow of the
form (1,...,1,3,1,.£.,1),. Figure 3.3 shows an example where n = 5 and £ = 3.

To get #(1,...,1,3,1,.£.,1),_1 from AZ,, we put two dominoes on the board, in posi-
tions (£)(¢ —1)/2+ 1 and n(n +1)/2 — £(¢ — 1)/2. Calculating the coupling functions,

0
clorwp) = 27" ke(jn, O ke(n — 1~ £,n—1,—j)
j=0
= 27"kr(0,n,f) kr(n —1—4£,n—1,0)

n—1
= 2"
(n—l—é)
n—1
= 27" .
")

The calculation of ¢(vg,ws) presents a more difficult challenge. On the next page, we
show c(vg,wq) = 2™ — (”}'1) —--—(n+1) -1



c(vg, ws)
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2—"2 kr(j,n,n — ) kr(n —1—€,n—1,n—1—7)

n—1

27> (1) ke(fym, £) (1) (=1 ke (£, — 1, 5)

J=0

27" (~

27" (-1

27 (—

—n

—n(_

n—1
()" ke (G, 0) | Y (1) F ke(k, n, j)
£

n—1
"y " ke(f,n, ) [ke(4n, ) — k(£ — 1,n — 1, 5)]

j=0

n—1
)Y K ) [e(m, ) = k(£ = 1m, ) + kx( = 2,m — 1,5)]

j=0
A

n—1
D)"Y " k(o 0) | D (—1) K ke(k,, 5) + (—1) ke (0,n — 1aj)]
=0

Lk=1
e

Lk=0

n—1

¢
1)n—1—f Z(_l)e_k Z kr(k7 ’ﬂ,]) kI‘(j, n, é)
k=

Jj=0

14 n
27 (=Y (-t (Z ke(k,n, ) ke(j, n, £) — kr(k,n,n) kr(n,n,6)>
k=0 j=0

14
2—n(_1)n—1—£ Z(_l)K—k (

3 ke(k,n, 5) ke(j, n, £) - (-1)'9(2) (-1)¢)

§=0

9 (1)~ 1- ez( e kg2 — (Z))

2—n( nlé[

£0)

o 2.6

The determinant now gives

5om [(ZH_ (z) () _1)2+ <n;1>2]

=% (?))2+ ()]
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This is be the probability that the dominoes are placed in the correct positions of the
Aztec diamond, so multiplying by 27("+1)/2 gives

2 + (" ) 1>2 . (311

Note the form is a sum of squares. This formula looks very combinatorial, so I would
hope to be able to answer the following question:

1 “ n
V4 _ 9(n—1)(n—-2)/2
#(1,...,1,3,1,.£.,1),_y = 20071 )/5 3 ()

j=t+1 N

Question 4. Can we prove Equation 3.11 by purely combinatorial means?

Appendix B contains a table of values for (1,...,1,3,1,...,1), for different values of n
and /.

3.6 Some Specific Cases

Note that this reduces to the result from Section 3.4 when £ = 0. Another region that has
a nice formula experimentally is (3,1...,1),. This is the subcase of the previous section
when ¢ = n — 1. When we apply Equation 3.11, we obtain the following verification of the
experimental result.

y2 [(n+1+1)” + (n)?

#(3715"',1)71 = 2n(n—1 D)

=2"n=D2 [(n +1)2 +1].  (3.12)

Again, this formula seems to lend itself to a nice combinatorial proof, but none has been
found to date.
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Chapter 4
FUTURE WORK

In addition to the questions asked in the previous chapters, other questions arise in the
search for a greater “pillow theory”. I present them in this chapter, along with the limited
progress that has been accomplished for each.

4.1 Additional Questions

In Section 2.1, we are introduced to the generating functions of 3-pillows “small number”
parts. In Section 3.3, we notice that the formula should be a sum of two squares. This leads
to the next question.

Question 5. Is there a way to prove algebraically that coefficients of the two generating
functions are sums of squares?

The pattern of the prime factors in the coefficients of the expansion of the generating
functions leads me to think that there should be algebraic way to answer this question. We
may be able to use the criterion for numbers to be sums of squares — that every prime
divisor congruent to 3 mod 4 must be of even power in the prime decomposition of the
number. This has not yet led to fruition. In addition, the denominator is of a nice form
when we take it mod p prime. Maybe I can exploit this?

In Chapter 3, I concerned myself only with pillow vectors with entries equal to either
1 or 3. However, pillow theory allows for vectors with arbitrary odd constants. This leads
to some questions. We see that odd pillows are created from successive Aztec diamonds
by introducing regular dominoes. Each 3-pillow independently arises from a unique Aztec
diamond.

Question 6. Should we really consider 2 mod 4 pillows and 0 mod 4 pillows as separate
sequences? Or should we consider them as one interleaved sequence?

This same question applies to sequences of any odd pillow.
We have a nice pattern for the small parts of 3-pillows.

Question 7. Is there a pattern for the small parts of all odd pillows?

I have calculated many values for 5-pillows and many patterns abound; they have yet to
lead to a concrete formula. See Appendix C for a subset of the data. This question had
a recent interesting turn. Using Equation 3.5, I calculated the values for the two squares
that are summed. Sometimes the two squares summed to the coefficient in the power series
equations Equations 2.1 and 2.2. Other times they summed to twice that number. This
leads me to infer that the coefficients of the power series may be simplest way to express
the values, but may not be the most natural. Stay tuned ...



20

Using Helfgott’s matrix method worked well to calculate #(1,...,1,3,1,...,1),, but I
only tried it in this case. Maybe the calculations for more regions will give more insight?

Question 8. Does Helfgott’s Theorem give a nice form for #(3,1,...,1,3,1,...,1),?

I choose this as the next value to be computed because calculating for four dominoes is not
hard, and I envision being able to build a 3-pillow step-by-step by placing one domino after
another to restrict AZ,.

In his 1994 article, Jockusch uses the rotational symmetry of a region to prove some
results having to do with sums of squares without explaining the structure of the squares
in themselves. Perhaps I will prove something similar for pillows.

Question 9. How does Jockusch’s article apply to pillows?

In addition, the study of binary Krawtchouk polynomials seems intriguing, and in my
trials to find formulas for the number of tilings of Aztec pillows, I have found one seemingly
new identity. It would be exciting to find some more.

Question 10. Can I find new Krawtchouk identities that will help in Pillow Theory?

A question that people ask about Aztec diamonds and other regions is “what does a
random tiling of the region look like”? This led to a discovery of polar regions in Aztec
diamonds and hexagonal tilings. This strays from the enumeration aspect of my research,
but is an interesting question nonetheless. See Figure 4.1 for an example.

Question 11. What does a randomly chosen tiling of an Aztec pillow look like?

With all these questions, I aim to come up with a whole Theory of Pillows, a step forward
in understanding which regions have tilings that are easily enumerable and which do not.
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Appendix A
TABLE OF 3-PILLOWS
Included in these tables are the number of tilings of the two families of 3-pillows divided
by an appropriate power of two. For 0 mod 4 3-pillows, we have divided by 2(2n)(2n-1)/2

and for 2 mod 4 3-pillows, we have divided by 2(27=2)(2n=3)/2-1 The non-square part was
calculated using a product of the bold faced terms (or some factors thereof).

A.1 Table of 2 mod 4 3-pillows (#(3,...,3,1),)

n #(3,...,3,1), Non-Square Part
1 2 2
2 22.5 5
3 210 16
4 24.32.5.192 45
5 29.3%.5.112-13 130
6 26.32.13.29-432.712 377
7 228.72.173.312 1088
8 28.5.17%.192.37-53%.712 . 892 3145
9 217.32.5.112.19*.592.612-101 - 2412 9090
10 210.9232.432.109 - 241 - 2632 - 4392 - 4612 - 5932 26269
11 234.34.53.74.112.13%.19%2.232.472.712 .73 - 1672 75920
12 212.3%4.5%.792.313-701-9112-1429% - 14812 - 17412 - 36912 219413

A.2 Table of 0 mod 4 3-pillows (#(3,...,3,3)n)

n #(3,...,3,3), Non-Square Part
1 5 5
2 32.13 13
3 192. 37 37
4 109 - 2632 109
5 3*.313-9112 313
6 5.114-312-151%-181 905
7 1012 - 1032 - 2617 - 83632 2617
8 312.7561 - 272832 - 351492 7561
9 310.52.13.29%. 414432 . 2112 - 17232 21853
10 472 -137 - 461 - 3139492 - 86472 - 2989992 63157
11 510.72.149-103992 - 395512 - 552012 - 100992 182525

12 192-37-533.107%2-269-4312-809% - 893172 - 617232 - 57792 527509
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Appendix B
TABLE OF 131’S

3,1"s)n  (1,8,1's)n  (1,1,3,18)n  (1,1,1,3,1's)y  (1,.%4.,1,3,1"s)n  (1,.%2.,1,8,18)n  (1,.9.,1,3,1s)n  (1,.7.,1,3,1s)n  (1,.8.,1,3,1's),

O © 00O O WN =

—_

9
10 25
17 65 113
26 146 346 481
37 292 932 1637 1985
50 933 2248 5013 7218 8065
65 905 4937 13897 24201 30529 32513
82 1450 10018 35218 74530 108970 126034 130561
101 2216 19016 82436 211460 363080 469160 513125 523265
122 3257 34112 179972 556040 1126148 1656128 1963193 2072698

9¢
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Appendix C
TABLE OF 5-PILLOWS

Included in these tables are the number of tilings of the three families of 5-pillows divided
by an appropriate power of two. The non-square part was calculated using a product of
the bold faced terms (or some factors thereof). “Quotient” represents the quotient between
successive terms.

C.1 Table of 2 mod 6 5-pillows (#(5,...,5,1),)

n #(5,...,5,1)p Non-Square Part Quotient
1 2 2

Y6.5
2 22 .13 13

)7.69
3 26 .32 .52 100

y3.61
4 24 .32 .192. 292 361

18.04
5 218 .36 .132. 1453 2006

}3.6796
6 26 .3%4.172.37. 988732 10693

y7.7957
7 235 .55 . 521 . 62772 83360

13.8047
8 28 .32 .5.229.277-52732 . 696893572 317165

)7.6562
9 221 .112.316.97.17892 . 12517 - 2357232 2428298

13.8303
10 210 . 132 . 1272 . 9301217 - 100799836548408841> 9301217

)7.6435
11 2%%.5.112.149-23857- 11855232 - 15733992 - 109390212 71093860

13.82888
12 2'2.53.54442097 - 806196277492 - 7559882680695003557> 272210485

C.2 Table of 4 mod 6 5-pillows (#(5,...,5,3),)

n #(5,...,5,3)n Non-Square Part Quotient
1 5 5

)5.8
2 32 .29 29

)4.48
3 2.5%.72.13 130

)6.7769
4 36.412.881 881

14.0374
5 22 . 792 . 9532 . 8557 3557

)7.5605
6 26893 - 496443832 26893

13.8225
7 210 .52 . 372 . 257 . 2580071632 102800

)7.6851
8 36 .829-953- 13212 - 689472 - 1117912 790037

)3.8115
9 24.32.5.172.312 .61 - 1097 - 22116573302564412 3011265

)7.6688
10 34 .202.137- 2081 - 121496332 - 524888608699277> 23092857

)3.8227
11 29 . 112 . 592 . 1493 . 296237 - 75491692 - 2951523929123521> 88278626

)7.65407

12 8%.5-.192.1092 - 593 - 3581225321 - 2018007132 - 3356075623404281417> 675690885
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C.3 Table of 0 mod 6 5-pillows (#(5,...,5,5),)

n #(5,...,5,5)n Non-Square Part Quotient
1 13 13

)2.615
2 2.72.17 34

)8.97
3 32.5-292 .61 305

)3.754
4 22.5.312.892 . 229 1145

)7.571
5 192 . 8669 - 43003 8669

)3.885
6 210 . 53 . 421 . 140108512 33680

)7.558
7 32.53.1677% - 5657 - 1077756112 254565

)3.8506
8 2% .32 .17-.232.292.312 . 109 - 35932 . 1789476312 980237

)7.6346
9 13- 172 - 575677 - 182318812 - 3999607493392 7483801

13.8278
10 29.13.29.1132 . 27993 - 14717466432 - 39013192056912 28646722

)7.65414
11 32.5-149 498312 - 294317 - 75169332 - 1815129504984124853> 219266165

13.82487
12 26.3%.5.167733113- 1203004071587 - 2171643672977970721432 838665565



