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Chapter 1
INTRODUCTION

The subject area of this dissertation is the study of enumeration of tilings of certain
regions, or equivalently matchings of certain bipartite graphs. In Chapter 1 of this paper,
we present a brief history of the subject. In Chapter 2, we specify the concept of Aztec
pillows and discuss constructions related to their study. In Chapter 3, we present purely
combinatorial and matrix-theoretical results on Aztec pillows. In Chapter 4, we present a
new method of cycle counting and show how it applies to the enumeration of domino tilings
of Aztec diamonds and Aztec pillows. Lastly, in Chapter 5, we generalize a conjecture on
Aztec pillows, present additional conjectures extrapolated from experimental calculations,
and expose open questions in the vein of the research.

1.1 Tilings and Matchings

Throughout this paper, we will be enumerating the number of complete tilings of regions
with dominoes. In general, consider any tiling of the plane with polygons. We consider a
diform to be the union of two adjacent polygons. In the particular case when the polygons
are all squares, these diforms are called dominoes. As an example, consider a chessboard.
A domino will be the union of two adjacent squares.

A tiling of the region will consist of an arrangement of non-overlapping diforms which
cover all polygons on the board. In our example, this implies that we use 32 non-overlapping
dominoes to cover the chessboard.

Another way to think of a complete tiling of the region is to consider a perfect matching
of the dual graph of the region (excluding the outer face). In our chessboard example, we
have 64 vertices which represent the squares of the chessboard, and 112 edges representing
the adjacencies of the squares. We wish to count the number of ways that 32 of these edges
form a perfect matching. In terms of this research, we shall never create a partial matching,
so hereafter any reference to a “matching” is a reference to a “perfect matching”.

In this paper, to abbreviate “the number of tilings of” in formulas, we will use # notation,
as in #AD,,. This notation appears in [32] by Pachter.

1.2 History of the Enumeration of Matchings

The problem in its current form originated in physics and chemistry in the 1930’s [28, 35].
Physicists were looking for a model of the liquid and gaseous states, by considering diatomic
molecules (dimers) as edges in the square lattice. For this reason, the model is sometimes
called the dimer model. Chemists were interested in aromatic hydrocarbons; hydrocarbons
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Figure 1.1: Rectangular board and honeycomb graph

form a honeycomb grid, and double bonds need to be placed in this lattice such that each
vertex has exactly one double bond attached to it. (See Figure 1.1 for examples of these
graphs.)

Progress was made with the infinite square grid in the 1960’s, as Kasteleyn was able to
count the number of tilings of a rectangular region as well as the associated torus. Given
an n X m board, with both n and m even, there are

n/2m/2

' k
4cos? —— 4 4cos® — 1.1
HH(COS n-|—1+ cos” (1.1)

j=1k=1

domino tilings of the board [21]. This result involves products of cosines and is not obviously
an integer. If we consider only the one-parameter family of graphs that is an 2n x 2n
subgraph S, of the infinite square lattice, computation shows that its formula has even
more structure, being either a perfect square or two times a perfect square.

Using Galois Theory, we can prove that the formula in Equation 1.1 is an integer [5],
but this is less than appealing. The region seems “nice”, so there should be a simple proof
of this result. In 1996 Pachter [32], based on work by Ciucu [7], found a nice way to
decompose the square region S, into two congruent regions H, and prove combinatorially
that #S, = 2"(#H,)?. This result is much more satisfactory, because it explains the
formula much more clearly than just “a perfect square or two times a perfect square”. As
for the general rectangle case, the formula becomes no simpler, but thanks to Percus [33] it
can be proved using determinants by exploiting the bipartite nature of the graph instead of
with the Pfaffian method that Kasteleyn used initially.

As for the honeycomb grid, it has been studied in depth as well. For a combinatorialist,
the most interesting aspect about the matchings on a honeycomb grid or lozenge tilings of
a hexagon is their many combinatorial interpretations. They relate to plane partitions and
thus to solid Young diagrams [8, 12]. Lozenge tilings of an equiangular hexagon with side
lengths (a,b,c) are in one to one correspondence with a solid Young diagram on [0,a] X
[0,8] x [0,c]. This correspondence can be understood visually by thinking of unit cubes
fitting inside a box of size a X b X ¢, and looking at the box from a point far away, gives
the appearance of a hexagon with rhombi tiling it. For an example of this visualization, see
Figure 1.2.

At MIT in the 1990’s, Jim Propp organized the Undergraduate Research Project in Ran-
dom Tilings. (Archived website: http://www.math.wisc.edu/~propp/tiling/www/.) Over
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Figure 1.2: A lozenge tiling on a triangular grid and the associated plane partition

its five years this program had over 50 participants. The goal of the program was to under-
stand more fully random tilings of Aztec diamonds (see the next section) and other regions.
After moving to the University of Wisconsin, Jim Propp wrote a survey paper [35] on di-
form tilings in 1999. This survey included a summary of research in this field and thirty-two
problems to answer and is a good starting point for additional information about diform
tilings and the lines of research considered. In addition, Jim Propp maintains a mailing list
focusing on domino tilings. With all this organization, the domino tiling community is well
established.

1.3 Aztec Diamonds and Height Functions

When rectangular regions were first considered, they were chosen for study because they
seemed to be the most natural regions — the regions that would minimize edge effects on
tilings. However, another region proved to yield simpler results. In the 1980’s, physicists
Grensing, Carlsen, and Zapp [16] presented a regularly bounded region that had a nice
formula for its number of tilings, but gave no proof of the formula. Later, mathematicians
Elkies, Kuperberg, Larsen, and Propp [10] rediscovered this region and gave four proofs of
the formula

#AD,, = 2Mt1/2, (1.2)

This region was called the Aztec diamond (see Figure 1.3a for an example), denoted by
AD,,, where n is the number of steps along any diagonal. With respect to discussing Aztec
diamonds and later Aztec pillows, we start from the center of the left plateau and consider a
“step” to be a movement along the boundary of the region tracing upward along one square,
followed by tracing right for at least one square until the next square begins. In particular,
the Aztec diamond in Figure 1.3a has four steps.



Figure 1.3: The Aztec diamond AD,4 and its associated boundary height function

One reason why the enumeration of tilings of Aztec diamonds is believed to have such
a nice formula is because of the restrictions the edge effects have on the structure of tilings
that appear in this region. To describe these edge effects, we define the concept of a height
function along the boundary of the region. We will define the value of this height function
at the points on the boundary on the integer lattice.

After coloring the Aztec diamond like a chessboard so that the left-most plateau is a
black square above a white square, we define the height function for the central point of
the plateau to be zero. Increase the height incrementally when following edges of a black
square clockwise or those of a white square counterclockwise (and decrease if you change
directions). In an Aztec diamond, these values steadily increase as you go up the top left
diagonal (see Figure 1.3b), so that between the left or right sides and the top or bottom
sides of the Aztec diamond there is a very large difference in height.

For any tiling of the region, we can extend the height function of the region to the
interior points of the region. We have already determined how a height function must act
around a black square and a white square. Since each domino covers both one black and
one white square, we can determine the height of any point on the border of a domino and
thus any vertex on the integer lattice on the interior of the Aztec diamond. Notice that
there is a height difference of three units across the center of any domino. As an example of
the height function on a region inherited from a tiling, see Figure 1.4. The large range for
the height function of an Aztec diamond puts large restrictions on the structure of tilings
that can be placed in the region. In particular, a random tiling of an Aztec diamond has
an intriguing structure as mentioned in Section 5.4.

For a nice visualization of the three-dimensional nature of height functions in domino
tilings, see Thurston’s article [41]. Height functions appear once again in Chapter 2 where
they are used to determine a workable definition for Aztec pillows. Height functions also arise
in lozenge tilings directly from the correspondence between tilings and the plane partitions
— the height above the bottom of the “box” that the unit cubes fill is considered to be the
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Figure 1.5: A fortress and its diforms

height of points on the interior of the region. For more information on height functions, see
8, 22, 37].

Diform tiling regions whose diforms are not always congruent are also studied. One
example of such a region is called a fortress (see Figure 1.5).

One common aspect to all these regions is that the graphs are all bipartite. Limited
research has been done in the non-bipartite case, but it is also based on matrix methods
introduced by Kasteleyn.

1.4 Current Lines of Approach

Various useful techniques have been created by the domino community, and we are always
on the lookout for more.

In counting matchings on graphs directly, sometimes it is useful to reduce one graph
to another whose number of tilings is known. A tool in this vein is called Urban Renewal,
presented by Jim Propp [36]. It uses the idea that we can replace one set of eight weighted
edges by another set of four differently weighted edges, and when we count the weighted
matchings of the first graph, it equals the number of weighted matchings of the second
graph. This is a nice combinatorial technique that sometimes proves useful.



Kasteleyn uses 0-+1-+% matrices in his work, a technique that is the basis for much work
in the subject. Helfgott exploits this in his bachelor thesis work, and his result is presented
in Section 3.4. Kuperberg uses representation theory in his 1998 and 2001 articles [25, 26].
Jockusch uses combinatorial methods that exploit 2-fold and 4-fold rotational symmetry in
his 1994 article [18]. Ciucu uses matching generating functions in graphs with reflective
symmetry in his 1996 article [7]. Kuo uses graphical condensation in his 2003 article [24].

A number of tools that have been created to take advantage of the bipartite nature of the
graph. One that is often useful is called vaxmacs, a customized emacs environment written
by David Wilson, into which you input a graph. This graph is written in VAX format, so
called because it is full of V’s, A’s, and X’s. It passes the corresponding Kasteleyn-Percus
matrix to Maple, which takes the determinant, giving the number of tilings of the region.
All the above types of graphs are representable in VAX-code, so creating a sequence of
graphs to feed into vaxmacs makes data collection easier. The software and documentation
for vaxmacs can be found at http://www.math.wisc.edu/~propp/software.html.

Once one collects the data, it is nice to be able to find a pattern in the data, and a
couple of options are available to that end. The most famous is the On-Line Encyclopedia of
Integer Sequences ([38]), but a second option exists in a Mathematica program called RATE
(German for guess), where you can input the first terms of a sequence, and it will guess the
next terms. The code can be found at http://www.mat.univie.ac.at/ kratt/rate/rate.html.
Prime decomposition calculations have been quickened using software called PARI/GP,
available for download at http://pari.math.u-bordeaux.fr/. Combinatorial arguments from
Concrete Mathematics [15] and Proofs That Really Count [4] have been especially useful in
the proofs provided.



Chapter 2

AZTEC PILLOWS

In this chapter, we define the central region of study whose domino tilings we enumerate
and explain some tools that we will use in future chapters.

2.1 Aztec Pillows

An Aztec pillow, as it was initially presented in [35], is a rotationally symmetric region
in the plane that has boundary constraints like those of Aztec diamonds. On the top left
diagonal however, the steps are composed of three squares to the right for every square up.
As an example, Figure 2.1 presents AP; and AP;y. The subscript on the Aztec pillow has
to do with how many squares there are in the central rows; there are always 2n squares in
each of the central rows in AP,,. This is exactly analogous to Aztec diamonds.

Because the step lengths are 3 instead of 1, this implies that the last step is either of
length 2 or of length 4 depending on the parity of n. This is why when Aztec pillows
were introduced in [35], they were broken into two types, “2 mod 4 pillows” and “0 mod 4
pillows”, indexed by their order, or number of steps taken. The Aztec pillows in Figure 2.1
would be called a 2 mod 4 pillow of order 4 and a 0 mod 4 pillow of order 5.

Aztec pillows were singled out as interesting regions because the number of tilings ap-
pears to have an intriguing formula, as described in the following conjecture.

Propp’s Conjecture. The number of tilings of an Aztec pillow AP, is a larger number
squared times a smaller number. We write #AP,, = (2s,. In addition, depending on the
parity of n, the smaller number s, satisfies a simple generating function. For APypy1, the

Figure 2.1: Two Aztec pillows



Figure 2.2: The boundary height function of the Aztec pillow AP;

generating function is
o
Z Som12™ = (5 + 6z + 3% — 22%) /(1 — 2z — 222 — 223 + z%). (2.1)
m=0
while for APsy,+2, the generating function is

[e o]
Z Som422™ = (54 3z + 2% — %) /(1 — 2z — 22° — 223 + z?), (2.2)
m=0

Remark. The value s, is not simply the squarefree part of #AP,. See Appendix A for a
table of values for the factorization of # AP, and the corresponding values s,,.

As described in Section 1.3, the height functions of the boundaries of Aztec diamonds
increase along every step on the upper-left boundary. We might expect Aztec pillows to have
such a nice formula for their number of tilings since the height function of the boundary
restricts the structure of tilings similarly. Since the steps are of odd length, the height
function increases as you climb each step. (See Figure 2.2.) This suggests that Aztec
pillows are the next natural region that we should consider to try to understand domino
tilings of regions more fully.

2.2 Generalized Aztec Pillows

After experimental calculation, it becomes clear that the above notion of a pillow can be
generalized to encompass a larger family of pillows. In particular, taking the height function
as a clue, we can define a generalized Aztec pillow. Hoping to increase our height function
at each step, we realize that this only occurs when the steps are of odd length. We define
a generalized Aztec pillow using the following definitions.



Definition. A region R is said to be horizontally convex if each horizontal line meets R
in a single line segment, not at all. Similarly, a region R is said to be vertically convex if
each vertical line meets R in a single line segment or not at all. We define a region R to be
block-convex if R is both horizontally and vertically convex.

Definition. A block-convex union of squares is said to satisfy the odd-step property if both
the northern and southern boundaries of the region are composed of odd steps. For the
northern boundary of the region, ensure that every up-step is composed of following one
square up and an odd number of squares to the right and every down-step is composed of
following an odd number of squares to the right and one square down. For the southern
boundary, rotate the region 180 degrees and apply the same restriction.

Definition. A block-convex union of squares R is said to have a central m x n belt if the
widest rectangle that can fit in R is of width n, the largest rectangle of width n that can fit
in R has height m, and removing this m X n rectangle from R disconnects the region into
two (possibly empty) subregions with mazimum width n — 1.

The center of the region with an m X n central belt will be defined to be the centroid of
the m X n rectangle.

Definition. A generalized Aztec pillow P is a block-convezr union of squares with a central
2 X 2n belt and that satisfies the odd-step property.

Remark. This implies that a pillow will have a top half and a bottom half split through
the central belt and that the plateaus on the top and the bottom of P are of even length.
This also implies that on both the top half and on the bottom half, there are the same
number of up-steps as down-steps. Note that when we talk about “up-steps” on the bottom
half, we are talking about the up-steps on the 180-degree-rotated bottom half.

In Chapter 3, we will consider rotationally symmetric pillows with steps of length one
on the upper right boundary (and symmetrically on the bottom left boundary). Otherwise,
results in Sections 2.6, 3.2, 3.3, and all of Chapter 4 apply to generalized Aztec pillows.

We need a notation to discuss the more well-behaved, rotationally symmetric Aztec
pillows with steps of length one on the upper right boundary. We reference the boundary
information of generalized Aztec pillows by a vector of the odd step lengths and an extra
index to clarify the length of the vector. We subtract 1 from the length of the top plateau
so that the last entry in the vector is odd as well. For example, AP, pillows are of the
form (3,...,3,3),, while AP»,_; are written (3,...,3,1),. Note that Aztec diamonds can
be also be written using this notation — AD,, = (1,...,1),.

The original Aztec pillows that Propp introduced will be referenced as 3-pillows, since
their steps are all of length three (except perhaps the last step). Similarly, we will call
vectors of the form (5,...,5,4), fori € {1, 3,5} the 5-pillows, and define other “odd pillows”
similarly. If q is odd, we denote the n-th ¢ pillow by AP,!. Through experimental calculations
using vaxmacs, Maple, and PARI, it appears that odd pillows all share the form of a smaller
number times the square of a larger number for their number of tilings, as discussed in
Section 5.1.
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Figure 2.3: Restricting Aztec diamonds to generalized Aztec pillows

2.3 A Coordinate System for Aztec Diamonds

A useful property of generalized Aztec pillows is that they can be constructed from Aztec
diamonds by placing initial dominoes in strategic positions and considering the region that
results once dominoes forced by the initial dominoes are placed. We present a visualization
of this property in the case of AP; and an arbitrary generalized Aztec pillow in Figure 2.3.
The lightly shaded dominoes are the dominoes that are forced by the initial placement of
the darker dominoes and thus would be included in any tiling of the pillow that includes
the darker dominoes.

We need not place many dominoes to arrive at a pillow. To restrict AD, to AP,, we
need n — 1 dominoes if n is odd and n dominoes if n is even. In general, if the generalized
Aztec pillow P is of type (41,...,ik)k, then we can construct P from the Aztec diamond
of order n = (k + Z?Zl z'j> /2 by placing n — k dominoes in both the top and the bottom
halves of AD,,. For example, in Figure 2.3a, we see how to create the pillow AP; from AD~
using 3 pairs of dominoes (the ones that are darkly shaded).

To be able to refer to specific blocks in an Aztec diamond, we need a coordinate system.
For an illustrating example, consider the Aztec diamond of order 4 shown in Figure 1.3 in
Chapter 1. We will label and give coordinates to both the black and white squares as shown
in Figure 2.4. In general, for the Aztec diamond of size n, there are n(n + 1) squares of
each color. The coordinates (z,y) of white squares satisfy all values 1 < z < n + 1, and
1 < y < n; whereas the coordinates (z',4y') of black squares satisfy all values 1 < 2z’ < n
and 1 <4’ < n+1. These coordinates will be of particular use in Sections 3.4 — 3.6, as will
the Krawtchouk polynomials presented in the next section.

2.4 The Binary Krawtchouk Polynomials

The Krawtchouk polynomial kr(j,n, k) is the coefficient of 27 in the polynomial expression
(1 — z)*(1 + z)"*. Two references for these polynomials are [23, 29].
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Figure 2.4: Square positions and coordinates

Some useful manipulations that Krawtchouk polynomials satisfy include
kr(a,n,c) = (—1)kr(n — a,n,c), (2.3)

kr(a,n,c) = (—1)*kr(a,n,n — ¢), (2.4)

which are useful for symmetric arguments,
kr(a,n,c) = kr(a — 1,n — 1,¢) + kr(a,n — 1,¢), (2.5)

which is useful for recurrences, and

n
Z kr(a,n, ) kr(i,n,b) = 042", (2.6)
i=0

which exhibits one of their orthogonality properties. These are all taken from [23].

2.5 The Gessel-Viennot Method

The Gessel-Viennot method was introduced in [13, 14], and has its roots in works by Karlin
and McGregor [20] and Lindstrém [27]. A nice exposition of the method is given in [1]. The
Gessel-Viennot method is a determinantal method to count vertex-disjoint path systems in
an acyclic directed graph G with k sources s; and k sinks ¢; for 1 <14,j < k. An example
of such a system is given in Figure 2.5.

A vertex-disjoint path system P is a collection of k vertex-disjoint paths from s; to ¢,;
for some o € S (where Sy is the symmetric group on k elements). Call a path system P
positive if the sign of this permutation o satisfies sgn(o) = +1 and negative if sgn(o) = —1.
Let p™ be the number of positive vertex-disjoint path systems and p~ be the number of
negative vertex-disjoint path systems.
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Figure 2.5: A directed graph with four sources and four sinks

Corresponding to this graph G is a k x k matrix A = (a;;) where a;; is the number of
paths from s; to t;. The result of Gessel and Viennot states that det A = p™ — p~. For the
example in Figure 2.5, the matrix A is

SO = N
S~ N
=W N o
W w o O

The determinant of A is 8. This corresponds the eight path systems in Figure 2.6. Notice
that there are no negative path systems in this example since the only permutation occur-
ring in a path system to be (1234), an even permutation of (1234). For some additional
applications of the Gessel-Viennot method, see [9, 13, 30].

In Chapter 4, we prove an analogue of the Gessel-Viennot method for counting cycle
systems on a type of graph we call a hamburger graph, which has applications to counting
domino tilings of generalized Aztec pillows.

2.6 Non-Intersecting Lattice Paths in Generalized Aztec Pillows

Given a generalized Aztec pillow region R with k1 steps in the upper half and ko steps in
the lower half, we can apply the Gessel-Viennot method to count the number of domino
tilings of R in four distinct ways.

We create a bijection between domino tilings of the region R and non-intersecting lattice
paths determined by the structure of R.

Overlaying the standard “chessboard” coloring of the squares in R on any domino tiling,
the dominoes break into four classes depending on their color scheme. To each class we
associate one or zero edges inside. The classes and their associated interior edges are
presented in Figure 2.7. By construction, the interior edges link together to form paths
that enter the region R on the left of the region at white squares and leave R on the right at



Figure 2.6: The eight path systems for the directed graph in Figure 2.5

Figure 2.7: The four classes of colored dominoes and their associated edges
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Figure 2.8: The horizontal lattice in a generalized Aztec pillow and a path system example

black squares and are non-intersecting. In this way, we associate to each domino tiling of R a
path system of ko paths on the lattice of all possible paths. See Figure 2.8 for an example of
a generalized Aztec pillow, its associated lattice, and the correspondence between a domino
tiling and its path system.

Rotating the region 90 degrees and reversing the coloring produces a region to which
we can apply the same method and find path systems of n paths. We will call the former
application of Gessel-Viennot the horizontal case and the latter application the vertical case.
If there is no rotational symmetry, we can rotate and invert colors twice more, giving four
distinct ways to apply the Gessel-Viennot method to one region. In particular, we can
calculate the number of tilings of R by taking the determinant of a k X k matrix, where
k= min(kl, kg)

Analysis of the experimental results found using this method are presented in Section
5.2.

2.7 The Schur Complement

The Schur complement calculation is a nice way to reduce the size of the calculation of a
determinant in question. For any n x n block matrix of the form

A1 A ]
A=
[ Ag Ay

with Ay a k X k matrix and Ay a (n — k) x (n — k) matrix, we can derive a matrix C of the

form
I 0
C= _
[ —An ATY Iy, ]
that has determinant 1. This implies that the determinant of
Ay Al ]
CA= _
[ 0 A2 — A21A1 1A12

has the same determinant as A. The matrix A, —A21A1_1A12 is called the Schur complement
of A1 in A.
We will use this handy calculation in Section 4.5.
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Chapter 3
COMBINATORIAL AND MATRIX THEORETICAL RESULTS

In this chapter, we discuss purely combinatorial results and matrix theoretical results
about generalized Aztec pillows. In Section 3.1, we explain the limited combinatorial re-
sults available using the method of inclusion-exclusion. In addition to the combinatorial
approaches to Aztec pillows, matrix theoretical results appear as well. In Section 3.2, a
prevalent type of matrix is introduced. This type of matrix allows us to prove a special
case of a theorem of Jockusch, which we do from the Kasteleyn matrix in Section 3.3. An
additional matrix theoretical line of approach uses Helfgott’s Theorem. This theorem is
presented in Section 3.4 and is used to prove additional explicit results about generalized
Aztec pillows in the final sections of this chapter.

3.1 Combinatorial Approaches to Aztec Pillows

Domino tilings of Aztec pillows are combinatorial objects, yet an intuitive combinatorial ap-
proach does not produce many results. One can quickly prove a formula for #(1,...,1,3),,
but the #(1,...,1,3,1), case is elusive, and any more complicated pillow seems unthinkable.

The region R = (1,...,1,3),-1 can be thought of as the Aztec diamond AD,, with a
horizontal domino forced in the top and bottom positions. There is a nice combinatorial
argument to prove the formula for #R.

Consider tiling AD,, in any way. There are 2*("*1)/2 ways to do this, by Equation 1.2.
On the other hand, we can break down the number of tilings of AD,, into cases. We can
place a horizontal domino in both the top and bottom rows in #R ways. Otherwise, there
would be some vertical tile in either the top or the bottom rows. By Inclusion-Exclusion,
we can count the number of ways to tile AD,, with some vertical tile in the top row, add the

- i Il i Il

- i I

Figure 3.1: Combinatorial proof of #(1,...,1,3), formula
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Figure 3.2: Combinatorial proof of #AP(‘; +3)/2 formula

number of ways to tile with some vertical tile in the bottom row (each produces an AD,,_1),
and subtract the overcounting of the cases when you place vertical dominoes in both the
top and the bottom rows of AD,,, which results in an AD,_5. (See Figure 3.1.)

This implies that

#(1’ o1, 3)n—1 _ 2n(n+1)/2 _9. 2(n71)n/2 + 2(n72)(n71)/2 _ 2(n71)(n72)/2 (22n71 —9n 4 1) .

(3.1)

Trying to use the same approach for (1,...,1,3,1),_1 runs into problems because the re-
sulting regions do not decompose into Aztec diamonds.

Another region that lends itself to combinatorial analysis is the region AP Re-

(g+3)/2
member that one interpretation of the n-th Fibonacci numbers f, (Sequence A000045 in

[38]) is the number of domino tilings of the 2 x 2n rectangle. Since for 1 < n < %, the
region AP, is a 2 x 2n rectangle, the formula # AP = f, holds. It is perhaps mysterious
however that the Fibonacci numbers appear in the next term AP(q — we have that

q+3)/2
AR (({1+3)/2
We condition on the position of the dominoes covering the top right square and the
bottom left square. Consulting Figure 3.2, there are four cases. When the two dominoes
are horizontal, the number of ways to tile the board is f;13. When one of the two dominoes
is horizontal, the number of ways to tile the board is f,; this happens twice. When both
of the two dominoes are vertical, the number of ways to tile the board is f, 3. Simplifying
the sum f,43 + 2f; + f4—3 using the Fibonacci recurrence f, = f,—1 + fn—2 gives the
desired result, #AP& t3)0 = 22 f,+1. Similar analyses for other simple boards do not yield
Fibonacci numbers so their formulas are not as simple.

=22 fq+1- We prove this result combinatorially.

3.2 Alternating Centrosymmetric Matrices

Define J to be the exchange matriz with 1’s along the cross-diagonal. Matrices A such that
JAJ = A are called centrosymmetric and have been studied in much detail because of their
applications in wavelets and other areas (see [31, 42]). A matrix such that JAJ = —A
is called skew-centrosymmetric. In the article by Tao and Yasuda, they define a gener-
alization of these matrices for any involutory matrix K (K2 = I), where a generalized
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centrosymmetric K-matriz A is a matrix such that KAK = A (see [2, 40]). Generalized
skew-centrosymmetric K-matrices are defined to be matrices such that KAK = —A.

In the study of generalized Aztec pillows, a related type of matrix arises. Define a matrix
K to be anti-involutory if K? = —I. If K is an n x n matrix for n = 2k even, we can write

K, K
K — 1 2)
K; K,
with each submatrix K; being of size k x k. Extend the definition of generalized centrosym-
metric matrices to include these matrices, i.e., a matrix is a generalized centrosymmetric

K-matrix if KAK = A, and similarly for skew matrices.
A simple case of such an anti-involutory matrix is when K; = K4 = 0. In this case,

K; = —Kgl, so we can write
_ 0 Ky
K = <—K2_1 0 ) . (3.2)

For such a matrix K, a matrix A that is a generalized centrosymmetric K-matrix has a
simple form for its determinant.

Theorem 1. If K is an anti-involutory matriz of the form in Equation 3.2, and the 2k x 2k
matriz A is a generalized centrosymmetric K-matriz, then A has the form

4_( B CK,
T \K;'C -K;'BK,)"
In addition, det A = (—1)"*1 det(B + iC) det(B — iC)

Proof: Calculating the conditions for which a matrix
A1 As
4= (A3 A4>
is a generalized centrosymmetric K-matrix for matrices K of the form given in Equation
3.2 gives us that K2_1A2 = A3Ky and Ay = —K2_1A1K2. This means we can write

A < B CK, )
K,'C -K,'BK,)’
for B= A; and C = —AQKEI. With this rewriting, det A is simple to compute:

detA = det( B CK, )

K;'C —K;'BK,

B I 0 B CKy I 0
= det <—z’K2_1 I) det (K;lc —K;13K2> det (-iK;l I)

_ e (B-C CK,
- 0 KB +iO)K,

= (=1)*det(B +iC) det(B —iC). .
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Figure 3.3: The general form of a 6 X 6 alternating centrosymmetric matrix

Corollary 2. The determinant of such a matriz A is the sum of two squares (perhaps up
to a sign), where the two squares are the real and imaginary parts of det(B + iC).

In the case of a generalized skew-centrosymmetric K-matrix A, the analogous result

states that A has the form
A B CK,
~ \-K,'C K,'BK,

and that det A = det(B + iC) det(B — iC), with no sign term.

Consider the specific case when the 2k x 2k matrix K is the alternating exchange matriz
— the matrix with its cross-diagonal populated with alternating 1’s and —1’s, starting in
the upper-right corner. Such a matrix K is anti-involutory. Had K been square of odd
order, this matrix would be involutory instead of anti-involutory.

Definition. Let K be the alternating exchange matriz. We define an n X n matriz A

to be alternating centrosymmetric if KAK = A or alternating skew-centrosymmetric if
KAK = —A.

Another classification of n X n alternating centrosymmetric matrices is that their entries
satisfy a;; = (1) ™la,11_ipnt1—;. An n x n alternating skew-centrosymmetric matrix
has entries that satisfy a; ; = (—1)itJ Op41—in+1—j- For an example of such a matrix, see
Figure 3.3.

By Theorem 1, we know that the determinant of an alternating centrosymmetric matrix
is the sum of two squares. We now present a different version of its determinant with
additional symmetry built in.

We first define a set of k-member subsets of [2k]. Take a subset I of [k]. Create I by
taking T U I', where s € I' if 2k +1 — 4 € [k] \ I. In this way, each T has k members. We
will call subsets of [2k] of this form complementary. We will define the sets S, S’, T, and
T' of subsets of [2k]. If I has £ elements,

if /=0 mod 4,
if£=1 mod 4,
S" if£=2 mod 4, or
T if£=3 mod 4.

N

place I into set
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Given a 2k x 2k matrix N, we define M (I) to be the k X k submatrix of N with columns
restricted to j € I, and rows restricted to the first k rows of .

Theorem 3. The formula for the determinant of an alternating centrosymmetric matriz A
satisfies

2

2
(-1 det A= |> det(M(D) — > det(M@D))| + |>_ det(M(I)— Y det(M(I))
Tes Ies IeT IeT 53)

Proof: Let L be the upper-right k X k submatrix of the alternating exchange matrix K.
As in the proof of Theorem 1, we write det A = det(B + iC) det(B — iC), where B = A;
and C = —AsL~!. We calculate the real and imaginary parts of det(B + iC). Writing out
explicitly B + iC gives

. . 1 .
a1 tiaior @12 —ia19—1 --- a1+ (—1)Fiag g
, ag1 +iasgr G292 —iasok—1 ... agk+ (—1)FTiag kg
B+iC= _ _ , L (34
. . 1 .
ak1 +iakok k2 —iGgok—1 --- Qg+ (—1)FTliag g
Define b; to be the column b; = (a1 j,a2;,...,a ). By linearity of determinants,

det(B + iC) is the sum of 2¥ determinants of matrices M with dimensions & x k, where in
column j we can choose to place either b; or i(—1)/T1byx,1_;. Given any determinant of
this form, we can convert it into a form where the indices of the columns are increasing:
I= i1 < - <ip <k+1/2 <idpq1 <--- < i Note that Iis complementary as defined
above. When we do this and account for changes of sign by interchanging columns, the
matrix M becomes

ati, oo a1, (=1 lag, i(=1) *ay
M= a2.,i1 e a2',ir 'L(_l)lﬁt A2iry1 -+ Z(_l)kﬁ—la%ik ' (3.5)
Akigy - Ok, i(—l)k+1ak,ir+1 ... i(—l)’”lak,ik

The determinant of this matrix is (§(—1)¥*1)%~" times det(M(I)). In particular, matrices
such that (k—7) =0 mod 2 contribute to the real part of det(B +iC), while matrices such
that (k —r) =1 mod 2 contribute to the imaginary part of det(B + iC). In addition, the
value of (kK —r) mod 4 determines the sign of the matrix in the sum.

This establishes the theorem. .

A similar approach gives an analogous statement for alternating skew-centrosymmetric
matrices — The formula for the determinant of an alternating skew-centrosymmetric matrix
A satisfies

2

det A= | det(M(I)) — Y det(M(D)| + | _det(M(I))— ) det(M(I))| . (3.6)

Tes Ies IeT TeT
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Just as in the analogous statement of Theorem 1, there is no (—1)* term that appears.

3.3 Jockusch’s Theorem and Rotationally Symmetric Generalized Aztec Pil-
lows

A certain symmetry property of a bipartite graph allows us to say something about its
number of matchings.

Definition. A 2-even symmetric graph G is a connected planar bipartite graph such that a
180 degree rotation Ro about the origin maps G to itself and the length of a path between v
and Ry(v) is even.

A result of William Jockusch states that if a graph is 2-even symmetric then the number
of matchings of the graph is a sum of squares [18]. Jockusch’s result produces a weighted
labeling function u of the quotient graph G5 involving complex numbers. Counting the
number of weighted matchings associated to u, denoted M, (G2), gives a value such that
the number of matchings of G is M, (G2)M,(G2), resulting in a sum of two squares.

In the specific case of 2-even symmetric graphs that can be embedded in the square
lattice in a 2-even symmetric way, Theorem 1 allows us to prove this result in a new way
that relies only on the structure of the Kasteleyn-Percus matrix of the region.

Our representation of the square lattice in the standard z-y coordinates will place vertices
at (2k + 1,2+ 1) for k,£ € Z, so that the center of rotation (0,0) is the centroid of some
square in the lattice. We color the vertices white if k 4 £ is even and black if k + £ is odd.

The Kasteleyn-Percus matrix A of a bipartite graph G = (V, E) has |V|/2 rows repre-
senting the white vertices and |V'|/2 columns representing the black vertices. The non-zero
entries a;; of A are exactly those that have an edge between white vertex w; and black vertex
b;. These entries are all +1 or —1 depending on the position of the edges they represent in
the graph — the restriction is that closed cycles have a net —1 product. In the case of the
square lattice above, this condition corresponds most nicely to giving entries the value —1
if they correspond to edges that are of the form e = (v; v9) with vy = (2k — 1,24 + 1) and
vy = (2k + 1,2¢ + 1) and such that v; is black. This is most easily understood by giving
orientations to the edges of the lattice as in Figure 3.4, and assigning an edge the value +1
if the edge goes from black to white and the value —1 if the edge goes from white to black.

With this definition of the Kasteleyn-Percus matrix, we formulate our theorem.

Theorem 4. The Kasteleyn-Percus matrizx A of a 2-symmetric graph G embedded in the
square lattice is alternating centrosymmetric.

Proof: We label the black and white vertices to determine the positions of the +1 and
—1 entries in A. After an initial labeling, we interchange rows and columns as necessary to
manipulate the matrix into being alternating centrosymmetric.

Embedded in this lattice, half the vertices of G lie above the horizontal line through the
origin. Coloring the vertices of G the color they inherit from the lattice coloring above, Ra
takes vertices to counterparts of the same color so m vertices of each color are in the upper
half of the graph and there are 4m vertices in all.

Label all white vertices v in the upper half of graph with values 1 to m, and do the same
for black vertices w. For each vertex z with value 4, label Ry(z) with value 2m + 1 — 3.



21

Figure 3.4: The canonical orientation of edges on the square lattice

From this initial numbering of vertices, we wish to modify some labels so that the labels
in each row of the square lattice are of the same parity. Note that each vertex and its
counterpart have opposite parity. Start with the top row. For each vertex that is labeled
with an even number, switch its label with its counterpart. In this way, all elements in
the top row will have an odd value. For the second row, exchange a vertex’s label with its
counterpart’s if it has an odd value. Continue in this fashion until all odd rows have vertices
with odd labels and all even rows have vertices with even values. After determining all rows
above the horizontal line through the origin, the rest of the rows come for free.

By this construction, for any horizontal edge (v;,w;) in G', we know that ¢ and j are of
the same parity. Similarly, we know that any vertical edge (v;,w;) has ¢ and j of opposite
parity. In addition, this implies that the rotation of a vertical edge by Ro results in the
opposite sign appearing in the Kasteleyn-Percus matrix.

Since (v;,w;) is a horizontal edge if and only if (vam+1—i, Wam+1—;4) is a horizontal edge, a
+1 appears in position a(; ;) for i+ j even if and only if a9 41 42m+15) i +1. Similarly, if
(vi,wj) is a vertical edge, then so is (v2m+1—i, Wam+1—;), and their entries in A are opposite.
This occurs exactly where 7 + j is odd. All other entries are zero, so for those a; ; we have
@ij) = F(em1-i2m+1-j)- »

These conditions imply that entry a(; j) equals (—1)"*a(m 41— 2m+1—j), Which implies
A is alternating centrosymmetric, as desired. .

From Theorem 1, we have the following corollary.

Corollary 5 (Jockusch). The number of matchings of a 2-even-symmetric graph embedded
in the square lattice is a sum of two squares.

Since the dual graph of a rotationally symmetric generalized Aztec pillow is 2-even-
symmetric and is already a subgraph of the square lattice, the following corollary also
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holds.

Corollary 6. The number of tilings of a rotationally-symmetric Aztec pillow embedded in
the square lattice is a sum of two squares.

3.4 Helfgott’s Theorem

Given a subregion S of a tiling region R such that the complement R\ S of S in R is tilable,
Rick Kenyon wrote an article that explained how to calculate the ratio of #(R\ S)/#R
[22]. In particular, S must be made up of an equal number of black and white vertices. The
basic idea is that a certain subdeterminant of the inverse of a Kasteleyn matrix gives this
ratio, so knowing how to calculate the entries of this matrix allows determination of the
ratio #S/#R with relatively few calculations.

In his Bachelor thesis [17], Harald Helfgott calculated what these matrix entries are
explicitly for when R is the Aztec diamond. In this way, using the coordinate system from
Figure 2.4, he proved that there is a formula involving a determinant for the ratio of the
number of tilings of the restricted region over the number of tilings of the Aztec diamond.
He gives the following result:

The probability of a pattern covering white squares vy, ..., vg, and black squares
w1, ..., wy of an Aztec diamond of order n is equal to the absolute value of
lc(vi, wj)|ij=1,..k- The coupling function ¢(v,w) at white square v and black
square w is

z;—1

2™ Z kr(janayi - 1) kr(y; - 17”’ - 17” - (.7 + ‘T'IL - $l)) (37)
3=0
for z; > z; and

n
-2 Z kr(janayi - 1) kI‘(y; -Ln-1,n- (] + ‘T; - I’L)) (38)

J=z;

for z; < z;, where (z;,y;) and (z},y,) are the coordinates of v and w in the
coordinate system in Figure 2.4, and kr(j, n, k) is the Krawtchouk polynomial.

This coupling function is difficult to manipulate but it has some nice properties. The
coupling matrix that arises from the placement of dominoes to form an Aztec pillow has a
particularly nice form.

Theorem 7. The coupling matriz of an Aztec pillow is alternating centrosymmetric or
alternating skew-centrosymmetric.

Proof: An Aztec pillow can be derived from an Aztec diamond by a placement of
dominoes that is symmetric with respect to a rotation by 180 degrees. In essence, this
means that for every white square in position v; = (z1,y;) and black square in position
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wy; = (z},y}) in the coordinates of Figure 2.4, there is a white square in position ve =
(n+1—1z1,n+2—y;) and a black square in position wy = (n+2 —z,n+1 — ¢}). (Note
that we do not require v; and wy to be in the same domino.)

Given this relation, we can calculate the relationship between c(vi,w;) and c(ve, w2).
Without loss of generality, assume that z} < z; (or else switch the v;’s and w;’s). This
implies that —z; < —z, which implies that zo =n+1—121 < n+2 — 2z} = 2, so we know
which of Equations 3.7 or 3.8 we need to apply in the various cases.

Making extensive use of Equations 2.3 and 2.4, we have that c¢(vg, ws) is equal to

n—ri

= 27" Z kr(j,nan—l'l_yl)kr(n_yian_11n_(j+(n+2_‘xll) _(n+1_$1)))

n—=x1
= 27" k(i — (y —1))ke(n — 1= (4 —1),n—1L,n =1 - (j — 2] +z1))
j=0
]n
= 27" Z kr(n_jan,n_(yl_l)) kr(n_l_(yi_l)an_l,n_l_(n_(j—l_xll_xl)))
Jj=x1
n
= 27" Y (=) (=1 ke (Gym g — 1) -
J=z1

(—nr D (Ut ) ket — 1 — 1 — (f + 2 — 21))

= ( 1)n—|—:c1—|—:c +y1—|—y1 -27 nz kI‘ J ,yl_l)kr(yi_lan_l,n_(j—l_xll_ﬁcl))

Jj=z1

— (_1)n+m+z’1+y1+y1 (v, wy). (3.9)
Notice that for v; = (z;,9;) and w; = (z},}), we have that

(_1)w1+y@+$"]+y‘; — _1 . (_1)Ii+yi+m{2d+1_j+ylgd+1_j

and therefore for fixed v;, the sequence Q(j) = (—1)%¥%¥%*Y is antisymmetric, in that
Q(j) = —Q(2d + 1 — j). Therefore we can relabel the vertices w; such that the sequence
Q(j) becomes (1,—-1,...,1,—1) by exchanging w; and wyq441—; if necessary. Relabeling the
vertices v; in the same way gives us that (—1)%*% = (—1)¢ and (—1)%% = (—1)J. This
means that Equation 3.9 implies that the entries in the newly indexed coupling matrix satisfy
A2d4+1—i2d+1—j = (—1)”+i+jai’j, implying that the coupling matrix is either alternating
centrosymmetric or alternating skew-centrosymmetric, depending on the parity of n. .

This proof also provides for a new proof of Jockusch’s Theorem, now restricted to the
case when the region is a subgraph of an Aztec diamond graph.

Corollary 8. The number of matchings of a rotationally symmetric subgraph of an Aztec
diamond 1is the sum of two squares.

Notice that there are no signs multiplying the sum of squares because Helfgott’s Theorem
includes an absolute value term. Since any 2-symmetric region that can be embedded in
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the square lattice can be thought of as a subgraph of a large enough Aztec diamond graph,
this also reproves Theorem 4.

3.5 Calculating #(1,...,1,3), using Helfgott’s Theorem

The simplest application of Helfgott’s theorem is when there are only two dominoes restrict-
ing positions in the Aztec diamond. One example of those cases is when the dominoes are
placed at the very top and bottom of AD,,. In this case, we find the region (1,...,1,3),,
of which we calculated the number of tilings in Section 3.1. We can now verify this formula
independently using Helfgott’s theorem.

We calculate (1,...,1,3),-1. The coordinates from Figure 2.4 of the white and black
squares covered by the dominoes (cells numbered 1 and n(n + 1) in AD,,) are:

(z1,91) = (1,1) (z1,91) = (1,1)
(v2,0) = (mom+1)  (wh,3h) = (n+ L,m)
This implies that the formulas for calculating the values c(v;, w;) are as follows:

For c(v1,w), we note z; < z1, so we apply 3.8:
1

n
clop,w) = =27 kr(j,n,0)kr(0,n — 1,n — j)
j=1

-2 ()-
= —272" —1)

For c(v1,ws), we note z, > x1, so we apply 3.7:
2

0
c(v,we) = 27 "Zkrg,nOkrn—ln 1,—7%)

= 2"k r(O n,0) kr(n —1,n — 1,0)
9-"(1. 1)

We can now use Equation 3.9 to establish that the determinant of the Helfgott matrix
for (1,...,1,3),—1 is

—27"(2" - 1) 2™ _ =20 [(on _ 1)2

_2—n(_1)n 2—n(_1)n—1(2n _ 1) =2 [(2 - 1) + 1] . (310)
This will be the probability that the dominoes are placed in the top and bottom positions
of the Aztec diamond. This was to be expected because we calculated combinatorially (in
Section 3.1) the number of tilings of (1,1,...,1,3), 1 to be 2~ D(=2)/2(92n—1 _gn 4 1),
With this information, we expect the above probability to be
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]

Figure 3.5: A (1,3,1,1,1)5 pillow from ADg

#(1, 1,...,1, 3)n—1 B 9(n—1)(n—2)/2 (22"—1 —on 4 1)
#AD, o on(n+1)/2
2n(n+1)/2272n(22n _ontl 2)
- on(n+1)/2
= 27 [(2" - 1)2 +1]. (3.11)

3.6 Calculating #(1,...,1,3,1,...,1), using Helfgott’s Theorem

Another region that is determined by the placement of only two dominoes is a pillow of the
0

form (1,...,1,3,1,...,1),. Figure 3.5 shows an example where n =5 and ¢ = 3.
14

To get #(1,...,1,3,1,...,1),—1 from AD,, we put two dominoes on the board, in
positions (£)(£ —1)/2+ 1 and n(n + 1)/2 — £(£ — 1) /2. Calculating the coupling functions,
0
clowp) = 27°)  ke(Gn, ) ke(n—1—£n—1,-j)
j=0
= 2 "kr(0,n,f) kr(n —1—£,n—1,0)
n— 1
n—1-—
n—1
= 27" .
( )

The calculation of c(vy,ws) presents a more difficult challenge. On the next page, we
show c(ve, wy) = 2" — ("2‘1) — = (n+1) -
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n—1

c(vg,we) = 2_”2 kr(j,n,n —€)kr(n —1—-4,n—1,n—1—j)
§=0
n—1

= 2 Y kel (=) (1Y ke~ 1,5)
j=0

n—1
= 2—71,(_1)%—1—[2 kr(janae) [kr(f,n,j) - kr(ﬁ - 15” - 1;.7)]
7=0

n—1
= 27"(=)" Y ke(j,n, €) [ke(€,m, §) — ke(€ — 1,m,5) + k(£ — 2,n — 1, 5)]

J=0

= 2—"(—1)"—1—/5 kr(j,n, £) (=1 Fkr(k,n, ) + (—1)° kr(0,n — 1,j)]
7=0

1 r 1
bl

~ ] &~
=

n—1
= 27"(=1)"Y ke(hym, ) | Y (-1 R ke(k,n, j)
=0

Lk=0
¢ n-1
Y S i,
k=0 Jj=0

=0

12 n
= 2_7)/(_1)7)/_1_Z Z(_l)z_k (Z kI‘(k, n, ]) kI‘(j, n, e) - kr(k7 n, n) kr(n’ n, e))
k=0

0 n
= 2y Sy (Z () i, )~ (-1 () (1)4)
k=0

=0

= 2”(—1)””2 (o*aa - (7))
l
- [W oy (Z)]
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This is be the probability that the dominoes are placed in the correct positions of the
Aztec diamond, so multiplying by 2?(+1)/2 gives
—1\2
+ (” , ) . (312)

This formula looks very combinatorial, but a purely combinatorial proof of Equation
3.12 has been elusive. Consider two special cases of Equation 3.12. When ¢ = 0, this
reduces to the result from Section 3.5. When ¢ = n — 1, we obtain the following verification
of an experimental result:

¢ 2

n—1)(n— 1 - n
#0101, Dy = 200272 2:()

jetr1 N

gnn-1)/2 [(R+1+1)? + (n)”

#(351’71)71: 9

] =2"=U2 [(n+1)2 +1].  (3.13)

Again, this formula seems to lend itself to a nice combinatorial proof, but none has been
¢

found to date. Appendix B contains a table of values for (1,...,1,3,1,...,1), for different
values of n and /.
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Chapter 4

THE HAMBURGER THEOREM

In this chapter, the focus changes from combinatorial and matrix-theoretical results to
counting matchings of the dual graph, which are in one-to-one correspondence with cycle
systems in related directed graphs. The main result of this chapter is an analogue of the
Gessel-Viennot method for counting cycle systems on a type of graph we call a hamburger
graph.

4.1 Hamburger Graphs

A hamburger graph H is made up of two acyclic graphs G; and G and a connecting edge
set E3 with the following properties. The graph G has k distinguished vertices {v1,--- , v}
with directed paths from v; to v; only if ¢ < j. The graph G2 has k distinguished vertices
{wk41," -+ , wor} with directed paths from w; to w; only if i > j. The edge set E3 connects
each vertex v; to vertex wy; and vice versa. (See Figure 4.1 for a visualization.)

We present a determinantal method for counting vertex-disjoint cycle systems in a ham-
burger graph H. A vertex-disjoint cycle system C is a collection of vertex-disjoint edge
cycles in H. Let £ be the number of edges in C that travel from G2 to G1 and let m be the
number of vertex-disjoint edge cycles in C.

Call a cycle system positive if (—1)*™ = 41 and negative if (—1)™ = —1. Let ¢*
be the number of positive vertex-disjoint cycle systems and ¢~ be the number of negative
vertex-disjoint cycle systems.

Throughout this chapter, the following simple example will serve to guide us. Consider
the two graphs G = (V1, E1) and Gy = (Va, E3), where Vi = {v1,vg,v3}, Vo = {wy4, ws, ws},

Figure 4.1: A hamburger graph
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Figure 4.2: A simple hamburger graph H

E, = {v1 = vo,v2 — v3,v1 — vz}, and By = {wg — ws,ws — wg,wg — wa}. Our
hamburger graph H will be the union of Gy, G2, and the edge set F3 consisting of edges
e; : vj — Wky; and e} : wg4; — v;. In this example we have that k£ = 3. Figure 4.2 gives the
graphical representation of H.

Corresponding to each hamburger graph H is a 2k x 2k block matrix My of the form

A Ik]

MH:[—Ik B

where the upper triangular matrix A = (a;;) represents the number of paths from v; to v;
in G1 and the lower triangular matrix B = (b;;) represents the number of paths from wy;
to wg4; in G2. The main result of this chapter — the “Hamburger Theorem” — proves
that det My =ct — ¢ .

In terms of the example above, the hamburger matrix My equals

1 1 2 100
0 1 1 010

0 0 1 00 1
MH_—100100
0 -1 0 110
0 0 -1 2 1 1]

The determinant of My is 17, corresponding to the seventeen cycle systems (each with
weight +1) in Figure 4.3.

The initial graph that inspired the hamburger graph comes from the work of Brualdi
and Kirkland [6] in which they give a new proof that the number of tilings of the Aztec
diamonds is 27" +1)/2,

The Hamburger Theorem applies to the enumeration of domino tilings of Aztec diamonds
and generalized Aztec pillows. To illustrate this connection, we count domino tilings of the
Aztec diamond by enumerating an equivalent quantity, the number of matchings on the
dual graph G of the Aztec diamond. The natural matching N of horizontal neighbors in
G as exemplified in Figure 4.4a on AD, is a reference point. Given any other matching M
on G, such as in Figure 4.4b, their symmetric difference is a union of cycles in the graph,
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Figure 4.3: The seventeen cycle systems for the hamburger graph in Figure 4.2
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Figure 4.4: The symmetric difference of two matchings gives a cycle system
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Figure 4.5: The hamburger graph for an Aztec diamond and an Aztec pillow
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such as in Figure 4.4c. When we orient the edges in IV from black vertices to white vertices
and in M from white vertices to black vertices, the symmetric difference becomes a union
of directed cycles. Notice that edges in the upper half of G all go from left to right and the
edges in the bottom half of G' go from right to left.

We can contract the edges of N to points and the graph retains its structure in terms
of the cycle systems it produces. This new graph H is of the form in Figure 4.5a. This
argument shows that the number of domino tilings of an Aztec diamond equals the number
of cycle systems of this new condensed graph, called the region’s digraph. In the case of
generalized Aztec pillows, the region’s digraph is always a hamburger graph. We discuss
the explicit matrices determined from the Hamburger Theorem in Section 4.5.

Brualdi and Kirkland’s proof used the Kasteleyn-Percus matrix of this directed graph
to enumerate its cycle systems. The Hamburger Theorem allows us to now enumerate
domino tilings by taking the determinant of a 2n X 2n matrix. An analogous reduction in
determinant size occurs in all regions to which this theorem applies. In addition, whereas
Kasteleyn theory applies only to planar graphs, there is no restriction of planarity for
hamburger graphs. For this reason, the Hamburger Theorem introduces a new counting
method for cycle systems in some non-planar graphs.

The proof of the Hamburger Theorem, like the proof of the Gessel-Viennot method,
hinges on terms canceling in the permutation decomposition of the determinant of My. If
a cycle system arising from the permutation decomposition of the determinant is My is not
vertex-disjoint, there are four possibilities. First, the cycle system may contain a cycle that
is self-intersecting. Second, the cycle system may have two intersecting cycles, neither of
which is a 2-cycle. If either of these first two properties hold, there is some notion of order
to determine which holds first. This vertex of first intersection is the basis for a family of
cycle systems that all intersect for the first time at this vertex. We show that this family
contributes a net zero weight in the determinantal expansion of M.

When calculating the number of cycle systems, we notice that the determinantal expan-
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sion of My has various summands that may represent the same cycle system. Consider
the second cycle system in the third row of Figure 4.3. Since the solitary edge cycle visits
vertices vi, ve, vs, we, and wy in order, this cycle contributes a non-zero weight in the
permutation expansion of the determinant corresponding to the permutation cycle (12364)
in Sg. Notice that this cycle will also contribute a non-zero weight in the permutation
expansion of the determinant corresponding to the permutation cycle (1364) since the edge
cycle follows a path from v; to v3 (by way of vg), returning to v; via wg and wy. Because of
this ambiguity, we must introduce the idea of a minimal permutation cycle and a minimal
cycle system, and realize that the determinant of My counts minimal vertex-disjoint cycle
systems. The minimal permutation cycle for this second cycle system in the third row of
Figure 4.3 is (1364).

In the case when neither the first nor second properties hold and that the cycle system
is not vertex-disjoint or not minimal, at least one of two additional properties hold. The
third property is that two cycles intersect and one of the cycles is a two-cycle. The fourth
property is that the cycle system may not be minimal. We can determine where the two-
cycle intersections and non-minimalities occur, and corresponding to this set of violations,
we create a family of cycle systems each with this set of violations. We show that this family
contributes a net zero weight in the determinantal expansion of M.

The cancellation from the above sets of families gives us that only minimal vertex-disjoint
cycle systems contribute to the determinantal expansion of My. This contribution is the
signed weight of each cycle system determined above, implying that the determinant of My
exactly equals ¢t — ¢

In Section 4.2, we present the definitions necessary to state the Hamburger Theorem. In
Section 4.3, we present the definitions necessary for the proof of the Hamburger Theorem;
we prove this result in Section 4.4. Lastly, we present applications of the theorem to Aztec
diamonds and Aztec pillows in Section 4.5.

4.2 Definitions and Statement of the Hamburger Theorem

Definition. A hamburger graph H = (V, E) is a directed graph composed of two acyclic
subgraphs G1 = (V1,E1) and Gy = (Va, Ey) with additional edges Es, described below.
Choose k wvertices v; from G1 and k vertices wgy; from Go with the restriction that there
are no directed paths from v; to vj in Gy if i > j or from wi4; to wii; in Go if 1 < j. We
call the vertices {vi,..., Vg, Wgt1,...,Wwar} the distinguished vertices of H. The additional
edge set E3 consists of k pairs of edges e; : v; — wyy; and €} : wy; — v; for 1 <i < k.

This leads to a visualization of the graph as in Figure 4.1, hence the name. We allow
weights on the hamburger by introducing weights wt(e) on every edge e € E; the simplest
weighting which allows for counting the number of cycle systems is wt(e) = 1. We only
require that wt(e;)wt(e}) = 1 for all 2 < ¢ < k — 1, and do not require this condition for
1 =1 nor for 7 = k.

Associated to the hamburger graph H, we define the 2k x 2k hamburger matriz My to
be the block matrix

(4.1)

MH:[ 4 Dl].

-Dy B
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The upper triangular k£ x k£ matrix A = (a;;) represents the sum of the products of the
weights of edges over all paths from v; to v; in G'1 and the lower triangular k£ X k matrix
B = (b;j) represents the sum of the products of the weights of edges over all paths from
W44 10 Wy in Go. The diagonal k x k matrix D; has as its entries d;; = wt(e;) and the
diagonal k x k matrix D, has as its entries d;; = wt(e}). Note that when the weights of the
edges in F5 are all 1, these matrices satisfy D1 = Dy = Ii.

In our hamburger graph H, there are two possible types of edge cycles. There are k
2-cycles

ei €i
CIV; — Wgaq — U;

and many more general edge cycles in H that alternate between G; and Go. We can think
of an edge cycle of this form as a path P; in G connected by an edge e1,1 € E3 to a path Q1
in G2, which in turn connects to a path P in G; by an edge 6’1’2, continuing in this fashion
until arriving at a final path @) in G2 whose terminal vertex is adjacent to the initial vertex
of P;. We write

e1,1 e’1,2 €21 €1 6’1,2
c:Pp—Q —>P ... 5D > Q.

To each edge cycle ¢, we define the weight wt(c) of ¢ to be the product of all the weights of
the edges traversed by c:
wt(c) = H wt(e).

ecc

We define a cycle system to be a collection C of m edge cycles. We define the sign of an
cycle system to be sgn(C) = (—1)*™, where £ is the total number of edges from G5 to Gy
in C. We say that a cycle system C is positive if sgn(C) = +1 and negative if sgn(C) = —1.

For a hamburger graph H, let ¢t be the sum of the weights of positive vertex-disjoint
cycle systems, and ¢~ be the sum of the weights of negative vertex-disjoint cycle systems.

Theorem 9. The determinant of the hamburger matriz My equals ¢ —c ™.

The proof of this “Hamburger Theorem” is based on cancellation in the permutation
expansion of the determinant of My, and will be proved after acquiring some additional
machinery.

4.3 Additional Definitions

In the proof of the Hamburger Theorem, there are two distinct mathematical objects that
have the name “cycle”. We have already mentioned the type of cycle that appears in graph
theory. There, an (elementary) cycle in a directed graph is a closed path with no repeated
vertices.

Secondly, there is a notion of cycle when we talk about permutations. If o € S, is a
permutation, we can write ¢ as the product of disjoint cycles ¢ = x1x2- - Xr, Where x, is
a cycle x, = (p1 pi2 *++ pup,) for integers 1 < p,,; < n. Recall that the order |x| of a cycle
X is its length.

To distinguish between these two types of cycles when there is possible confusion, we
call the former kind an edge cycle and the latter kind a permutation cycle. Notation-wise,
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we will use roman letters when discussing edge cycles and Greek letters when discussing
permutation cycles.

We recall that the permutation expansion of the determinant of an n X n matrix M is
the decomposition of the matrix as

det M = Z (sgno)my (1) *** Mp o(n)- (4.2)
oESy

We will be considering non-zero summands in the permutation expansion of the determinant
of the hamburger matrix M. Because of the special block form of the hamburger matrix in
Equation 4.1, the permutations ¢ that have non-zero contributions to this sum are products
of disjoint cycles of either of two forms — the simple transposition

X = (11 wi1)

or the more general permutation cycle

X = ((1011 ()012 - sollll wll w12 .. wllll (’021 ...... (10)\“)\ w)\l “ e w)\V)\)' (4:.3)

In both cases, 1 < ¢, < k, b+ 1 < wye < 2k, 0 < @41, and wye > w, 41 for all
1 <+ < X and relevant x. Another piece of information that comes out of the matrix is
that ¢,,, +k = w,1 and w,,, — k = ¢,41,1. We also have that wy,, —k = ¢11. So that this
permutation cycle is well-defined, we make sure that ¢1; = min, ., ¢,.. In order to reference
this value later, define ®(x) = 1.

Given a permutation o = x1x2--- Xr, €ach number ¢, or w, appears only once in all
permutation cycles of o. The function ® defines an ordering on cycles in a cycle system
— we say that the associated edge cycle c, comes before the associated edge cycle ¢,/ if
D(x) < ®(x'). We call this the initial term order.

We call a permutation cycle x minimal if it is a transposition or if y, = v, = 2 for all «.
This condition implies we can write our more general permutation cycles y in the form

X = (P11 Q12 Wit W12 Y21 -+ Pr2 Wal Wr2), (4.4)

with the same conditions as before. We call a permutation o = x1 - - - X minimal if each of
its disjoint cycles y, is minimal.

To each permutation cycle x € Sok, we can associate one or more edge cycles ¢, in H. If
X is the transposition x = (¢11 wi1), then we associate the edge 2-cycle ¢y : vy, — Wy, —
Uy, t0 X

To any permutation cycle y that is not a transposition, we can associate multiple edge
cycles ¢, in the following way. If x has the form of Equation 4.3, then for each 1 <@ < A, let
P; be any path in Gy that visits each of the vertices vy, , vy,,, all the way through Vi, in
order. Similarly, let (); be any path in G2 that visits each of the vertices w,,,, , wy,,, through
(0 in order. For each choice of paths P; and @);, we have an additional possibility for the
edge cycle c,; we can set

¢ Py “1 0, Seay Py ! P, &M Qx. (4.5)
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Figure 4.6: A permutation cycle x and two edge cycles in H associated to x

See Figure 4.6 for an example in the hamburger graph in Figure 4.2. We call A\ the number
of P-paths in c,.

We defined cycle systems earlier in Section 4.2, but we will see that the proof of Theorem
9 requires us to think of the cycle systems first as a permutation and second as a collection
of edge cycles determined by the permutation. In terms of vertex-disjoint minimal cycle
systems, we show that this characterization is the same.

If H is a hamburger graph with k pairs of distinguished vertices, we define a cycle
system-permutation pair as follows.

Definition. A cycle system-permutation pair (or CSP-pair for short) is a pair (C, o), where
o € Sy, 1s a permutation and C is a collection of edge cycles ¢ € C with the following property.
If the disjoint cycle representation of o is 0 = x1--- X+, then C is a union of 7 edge cycles
cy, for 1 <o < 7 such that c,, is an edge cycle associated to the permutation cycle x,.

This definition of CSP-pair implies that each permutation ¢ yields many unions of edge
cycles C, that collections of edge cycles C may be associated to many permutations o, but
that any vertex-disjoint union of edge cycles C corresponds to one and only one minimal
permutation o,,. This is because given any path as in Equation 4.5, we can read off the
initial and terminal vertices of each F; and @); in order producing a permutation cycle.
Since the edge cycles are disjoint, there can be no repeated vertex from each edge cycle, so
indeed the minimal permutation cycles are disjoint as well. We define a CSP-pair (C,0) to
be minimal if ¢ is a minimal permutation.

Each CSP-pair appears once in the permutation expansion of the determinant of M.
We break down the contribution of each CSP-pair into its weight and its sign. The weight
of a CSP-pair is dependent on its cycle system, whereas its sign is dependent on both its



36

-
-
N

Figure 4.7: A self-intersecting cycle and its corresponding pair of intersecting cycles

permutation and its cycle system because of the —1-terms in the lower left block of the
hamburger matrix. We define the weight of a CSP-pair (C,0) to be the product of the
weights of the associated edge cycles ¢, € C.

For a CSP-pair (C, o), where 0 = x1 - - X, we define the sign of the CSP-pair sgn(C, o)
to be (—1)*sgn(c), where £ = > ¢ cc Ax and where A is the number of P-paths in c,. We
can think about the sign of (C, o) as being equal to the product of the signs of the associated
edge cycles ¢, in C, where the sign of ¢, would be sgn(c,) = (—1)*xsgn(x).

Note that if (C,0) is a minimal CSP-pair then sgn(c,) = +1 for a transposition x and
sgn(cy) = (1) 1 if y is of the form in Equation 4.4. In particular, a vertex-disjoint CSP-
pair is consistent with the definition of a vertex-disjoint cycle system given in Section 4.2
when (C, o) is minimal.

We say that a CSP-pair (C, o) is positive if sgn(C, o) = +1 and is negative if sgn(C, o) =
—-1.

4.4 Proof of the Hamburger Theorem

We create families F of not vertex-disjoint or not-minimal CSP-pairs (C,o) whose net
contribution to the permutation expansion of the determinant of My is zero. In this way,
only the minimal vertex-disjoint CSP-pairs contribute their weight to the determinant so
det Mg =ct —c™.

We consider first the possibility that in the collection of edge cycles C, there is either a
self-intersecting edge cycle or two general edge cycles that intersect (i.e. neither is a 2-cycle)
or both. If neither of these occurs, skip to the next section of the proof.

The idea to prove the argument comes from the picture presented in Figure 4.7. When
you have a self-intersecting edge cycle, changing the direction in which you traverse the
edges at the self-intersection vertex leads to breaking the one self-intersecting cycle into two
cycles that intersect at that same vertex. Since the edge set of the collection of edge cycles
has not changed, the weight of the two CSP-pairs is the same. Note that we have introduced
a transposition into the sign of the permutation cycle of the CSP-pair which changes the
sign of the CSP-pair, so that these two CSP-pairs cancel in the permutation expansion of
the determinant of Myg.

One can imagine that this means to every self-intersecting CSP-pair you can associate
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one CSP-pair with two cycles intersecting. However, more than one self-intersection may
occur at the same vertex, and there may be additional edge cycles that pass through that
same vertex. Exactly to what this corresponds is not clear. Do we break one of the self-
intersections or sew together two of the intersecting cycles? If we were to break all the
self-intersections so that we have some number N of cycles through our vertex, it is not
clear in what order we must sew the cycles back together. One starts to get the idea that
we must consider all possible ways of sewing back together. Once we do just that, we have
a family of CSP-pairs, all of the same weight, whose net contribution to the permutation
expansion of the determinant is zero.
This idea is conceptually simple but the proof is notationally complicated.

In terms of the initial term order, we want to determine the first general edge cycle
Cxa € C that satisfies one of the following two properties:
(i) The edge cycle cy,, is self-intersecting.
(ii) The edge cycle c,,, intersects some other edge cycle Cxg, Where xp € o is not a transpo-
sition.

To determine which of these conditions appears first, follow the paths P; and Q); starting
at ®(cy, ):

Cxa :PL = Q1= Py — - = Py — Qp,

and see which of the following happens first. While traversing the path, you cross a vertex
that you are going to meet again later or while traversing the path, you cross a vertex that
is a vertex of some other edge cycle, and the cycle happens not to be a transposition. This
vertex is well-defined and unique and is the basis for the family we create.

In our discussion, we make the assumption that this vertex is a vertex v* in Gi. A
similar argument exists if the first appearance occurs in G3. Notice that at v* there may
be multiple self-intersections and/or multiple cycle crossings. We will create a family F of
CSP-pairs that takes into account each of these possibilities.

If we want to rigorously define the breaking of a self-intersecting edge cycle, we need
to specify many different components of the CSP-pair (C, o). First, we need to specify on
which edge cycle in C we are acting. Next, we need to specify the vertex of self-intersection.
Since this self-intersection vertex may occur in multiple paths, we need to specify which two
paths we interchange in the breaking process.

In the following paragraphs, we will define an operation “break” on CSP-pairs, which
takes in a CSP-pair (C, o), one of ¢’s disjoint permutation cycles x,, the associated edge
cycle ¢y, , paths Py and P, in c,,, and the vertex v* in both P, and P, where c,, has a
self-intersection. For simplicity, we assume that v* is not a distinguished vertex, but the
argument still holds in this case. The inverse of this operation will be the operation “sew”.

In this framework, c,, has the form

o P @12 P2 P2 Qy o2 P Q= 2 P2 Qg
where Py and P, can be separated into two halves as

Py: P{Y - v* — PP
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and
P,: PY — v* - PO,

Remember that P, and P, are paths that stop over at various vertices depending on
the permutation x,. The vertex v* must have adjacent stop-over vertices in each of the
two paths P, and P,. Let the adjacent stop-over vertices in P, be vy, and vy, ,, and the
adjacent stop-over vertices in P, be v,, and vy, .

This implies x, has the form

Xa:(goll - (Plul wll Soy Soy+1 - (PZ (PZ+1 P (P)‘N)\ w)\l P wAl/)\)-

We can now properly define the output of the operation “break”. We define x5 and ¥,
by splitting x, as follows:

XB = (9011 Tt Py Patl w)\u/\)

and
Xy = (‘Py+1 s 0s),

with the necessary rewriting of x,, to have as its initial entry the value ®(x,). Define c,,
and ¢y, to be

ey P2 QP P 5vt 5 PA 5Q, -5 P> Q

and

e, t PV v 5 PP 5 Qy— - = Q1

again changing the starting vertex of ¢, to Vo (cy., )-
We define the break of the CSP-pair with the above inputs to be the CSP-pair (C',o’)
such that

C, = C U {CXE,CX,Y} \ {ch}
and
! -1
o' =0Xe XXy =0 (Py+1 Pzt1)-

The edge set of C is equal to the edge set of C’, so the weight of the modified cycle
systems is the same as the original. Since we changed o to ¢’ by only multiplying by a
transposition, the sign of the modified CSP-pair is opposite that of the original.

Having defined break and sew, we continue the proof of Theorem 9. To any CSP-pair
(C,o) that has a cycle that satisfies either property (i) or (ii), let ¢,, be the first such
cycle in the initial term order. Let v* be the first vertex of intersection in c,,. Then for
all edge cycles ¢ that have one or more self-intersections at v*, break c at v*. Define the
CSP-pair (Cs, 05) that results to be the simple CSP-pair associated to (C,o). There will be
some number N of general cycles that intersect at vertex v*. There may be a 2-cycle that
intersects v* as well, but this does not matter.

For any permutation { € Sy, let £ = (12 - - - { be its disjoint cycle representation, where
each (, represents a disjoint cycle. For each 1 < ¢ < 7, sew together edge cycles in order.
If {, = (6,1 ---6.c,), sew together Cxs,, and Cys,, b v*. Sew that result together with Cxs, 57
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and so on through ¢, . Note that the result of these sewings is unique, and that every
CSP-pair (C,0) that has (Cs,05) as its simple CSP-pair can be obtained in this way and
no others. We can perform this procedure for any ¢ € Sy, and the sign of the resulting
system (Cg¢, 0¢) is sgn(Cg, 0¢) = sgn(&) sgn(Cs, 05). This means that the contributions of the
weights of all CSP-pairs in the family F to the determinant is

> sgn(€) sgn(Cs, 05) wt(Cs, 05) = 5gn(Cs, 05) wt(Ca, 05) Y sgn(€) = 0. (4.6)
£eSn §ESN

So elements of the same family cancel out in the determinant of Mp.

If there is no such self-intersection or intersection of two general cycles, then for the
CSP-pair to be not vertex-disjoint or not minimal, one of the following must be true for the
CSP-pair (C,0).

(iii) There is a transposition xo = (¢,w) € o such that ¢ = ¢, : v, = w, — v, intersects
some other edge cycle ¢ = ¢, 5, Where x5 € 0.
(iv) There is some permutation cycle x, € o that is not minimal.

We will show that each CSP-pair having a cycle c satisfying either condition (iii) or
condition (iv) can be grouped into a family F of CSP-pairs, each with the same weight.

Define a set of indices I C [k], of which an element can become a member in one of two
ways. If (C, o) is not minimal, there is permutation cycle x, with more than two consecutive
©’s or w’s in its cycle notation. For any intermediary ¢ between two ¢’s or .+ k between two
w’s, place ¢ in I. For example, if xq = (++- ¢’ v ¢" ---), we place ¢+ € I. If (C,0) satisfies
condition (iii) at some point, there is a 2-cycle ¢ : v; — wg4; — v; such that either v; is in
some other cycle ¢y, or wgy; is in some other cycle ¢, , or both. We also declare this ¢ to
be in 1.

Note that any CSP-pair (C, o) satisfying one of conditions (iii) or (iv) will have a non-
empty set I. From our original CSP-pair, create the associated minimal CSP-pair (Cy,, 01,)
by removing any transposition x, from o and its corresponding 2-cycle c,, from C, and
also removing any intermediary ¢’s or w’s from o. We do not change the associated edge
paths in C since they still correspond to this minimized permutation cycle.

Let ¢ be any element in I. Since ¢ € I, the 2-cycle ¢; : v; = wgy; — v; intersects another
edge cycle either at v;, at wg;, or both. So there are four cases:

(1) ¢; intersects some edge cycle c,, at v; and no cycle at wy .

(2) ¢; intersects some edge cycle ¢y, at wg4; and no cycle at v;.

(3) c; intersects some edge cycle cxs at v; and the same cycle again at wy;.

(4) ¢; intersects some edge cycle c,, at v; and some other cycle ¢, at w;.
See Figure 4.8 for a visual reference.

Define a set of two or four options O; for each 1.

In case (1), there are two options. Let o; be the option to include the edge cycle ¢;
in Cp, and its corresponding transposition x, in ¢,,. Let 02 be the option to include the
intermediary ¢ =4 in x in the position where ¢y, passes through v;.

[Note that we could not apply both options at the same time since then the x, and
Xxg would not be disjoint cycle permutations and so would not appear in the permutation
expansion of the determinant.]
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Figure 4.8: The four cases for general edge cycles to intersect with a 2-cycle

Similarly in case (2), there are two options. Let o1 be the option to include the edge
cycle ¢; in C,,, and its corresponding transposition x, in o,,. Let 0 be the option to include
the intermediary w =% + k in x,, in the position where ¢, passes through wy.;.

In case (3), there are four options. Let o; be the option to include the edge cycle ¢;
in Cp, and its corresponding transposition x, in o,,. Let oo be the option to include the
intermediary ¢ =i in xg in the position where ¢, passes through v;. Let o3 be the option
to include the intermediary w = i+ k in X in the position where ¢y, passes through wy;.
Let o4 be the option to include both intermediaries ¢ = ¢ and w = ¢ + k in xg in the
respective positions where ¢, , passes through v; and wg,.

In case (4), there are four options. Let 07 be the option to include the edge cycle ¢;
in C,, and its corresponding transposition x, in o,. Let oy be the option to include the
intermediary ¢ =i in X in the position where c,, passes through v;. Let o3 be the option
to include the intermediary w =% + k in x, in the position where ¢, passes through wy ;.
Let o4 be the option to include intermediary ¢ = 7 in xg in the position where c,, passes
through v; and intermediary w = ¢+ k in . in the position where ¢, passes through wy;.

Corresponding to the associated minimal CSP-pair (Cy,,0,,) and index set I, define
the family F to be the set of CSP-pairs (Cy,0f) where we exercise some set of options
oj € O; on (Cy,,0p,) for every i. Note that every CSP-pair derived in this fashion is in
fact a CSP-pair that satisfies either condition (iii) or (iv) and is such that its associated
minimal CSP-pair is (C,0p,). There is also no other CSP-pair (C',¢') that has (Cp,, o)
as its minimal CSP-pair.

Every member CSP-pair in F has the same weight since each option changes the edge
set of C by at most a 2-cycle v; = wgy; — v;, where 2 <4 < k — 1 and each of those two
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cycles contributes a multiplicative 1 to the weight of the CSP-pair. Note that the peculiar
bounds are because no permutation ¢ could ever include two cycles through v, wgy1, vk,
or wor. Also notice that in each option set O;, the sign changes induced by the options
sgn(o;) are sgn(o1) = +1, sgn(oz2) = —1, and sgn(o3) = —1 and sgn(o4) = +1 if they exist.
In this way, any non-vertex disjoint or non-minimal CSP-pair is a member of one of these
families, and the cumulative weight from a family F is zero.

Since every CSP-pair appears once in the permutation expansion of det My, the only
CSP-pairs that do not cancel each other out are those that are vertex-disjoint and come
from minimal permutation cycles. Therefore det My is the sum over such CSP-pairs of
wt(C, o) times their signs sgn(C, o). .

4.5 Applications of the Hamburger Theorem

As mentioned in Section 4.1, hamburger graphs arise in the study of all generalized Aztec
pillows. We discuss first the application of the Hamburger Theorem in the case when the
region is an Aztec diamond, mirroring results of Brualdi and Kirkland. Then we discuss the
results from the case when the region is a 3-pillow, and lastly we explain how to implement
the Hamburger Theorem when our region is any generalized Aztec pillow.

We wish to concretize the notion of a digraph of the Aztec diamond AD,,. Given the
natural tiling of an Aztec diamond consisting solely of horizontal dominoes, we place a
vertex in the center of every domino. The edges of this digraph are made up of three
families of edges. From every vertex in the top half of the diamond, create edges to the
east, to the northeast, and to the southeast whenever there is a vertex there. From every
vertex in the bottom half of the diamond, form edges to the west, to the southwest, and to
the northwest whenever there is a vertex there. Additionally, label the bottom vertices in
the top half v; through v, from west to east and the top vertices in the bottom half wy 41
through wa,. For all i between 1 and n, create a directed edge from v; to wy,4; and from
Wyp+i t0 v;. The result when this construction is applied to ADy is a graph of the form in
Figure 4.5a.

Since both the upper half of the digraph and the lower half of the digraph are both planar,
there are no negative cycle systems, so the determinant of the corresponding hamburger
matrix counts exactly the number of cycle systems in the digraph.

To apply Theorem 9 to count the number of tilings of AD,,, we need to find the number of
paths in the upper half of D from v; to v; and the number of paths in the lower half of D from
Wn4; t0 Wp4i. The key observation is that by the equivalence in Figure 4.9, we are in effect
counting the number of paths from (,4) to (4,j) using steps of size (0,1), (1,0), or (1,1)
that do not pass above the line y = z. This is exactly a combinatorial interpretation for the
(j —17)-th large Schréder number. The first six large Schroder numbers are 1,2, 6,22, 90, 394,
and are referenced as A006318 in the Encyclopedia of Integer Sequences [38].

The Hamburger Theorem implies that the number of tilings of the Aztec diamond AD,,
Sn

. n
is equal to det [ I ng

] , where S, is an upper triangular matrix with the i-th Schréder
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Figure 4.9: The equivalence between paths in D and lattice paths in the first quadrant

number on its ith superdiagonal:

1 2 6 22 90 394
012 6 22 90
G—|001 2 6 2
000 1 2 6 |’
000 0 1 2
(000 0 0 1 |

Brualdi and Kirkland prove a similar determinantal formula for the number of tilings
of an Aztec diamond in a matrix-theoretical fashion based on the Kasteleyn matrix of
the graph H and a Schur complement calculation. The Hamburger Theorem gives a purely
combinatorial way to reduce the calculation of the n(n+3) x n(n+3) Kasteleyn determinant
to the calculation of a 2n x 2n Hamburger determinant. Following the cues from Brualdi and
Kirkland, we can reduce this to an n X n determinant via a Schur complement calculation,
which was described in Section 2.7.

In the case of the block matrix My in Equation 4.1, taking the Schur complement of A
in My gives that

det My = det A - det(B + DyA™'Dy) = det(B + D, A71Dy), (4.7)

since A is an upper triangular matrix with 1’s on the diagonal. In this way, every hamburger
determinant can be reduced to a smaller determinant of a Schur complement matrix. In the
case of a simple hamburger graph where Dy = D1 = I, the determinant calculation reduces
further to det(B + A~!). Lastly, in the case where the hamburger graph is rotationally
symmetric, B = JAJ, where J is the exchange matrix. This implies we can write the
determinant only in terms of the submatrix A4, i.e., det(A ! + JAJ) = det(4 + JA 1))
since J has determinant +1.
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Figure 4.10: The digraph of a generalized Aztec pillow from the digraph of an Aztec diamond

In terms of the Aztec diamond graph example above, we can thus calculate the number
of tilings of the Aztec diamond ADjg as follows. The inverse of Sg is

-2 -2 -6 -22 -90
1 -2 -2 -6 -22

1
0
g1 _ 0o 0 1 -2 -2 —6
6 o 0 0 1 -2 =2/|{°
0 0 0 0 1 -2
0 0 0 0 0 1

which implies that the determinant of the reduced hamburger matrix Mg

2 2 6 22 90 394
-2 2 2 6 22 90
-2 -2 2 2 6 22
-6 -2 -2 2 2
-22 -6 -2 -2 2
-90 -22 —6 -2 -2

Mg =

NN O

gives the number of tilings of ADs.

Brualdi and Kirkland were the first to find such a determinantal formula for the number
of tilings of an Aztec Diamond [6]. They were able to calculate the sequence of determinants
{M,,} using a J-fraction expansion, which only works when matrices are Toeplitz or Hankel.

Since generalized Aztec pillows (and 3-pillows as a special case) all can be created from
Aztec diamonds by placement of dominoes, we define the digraph of a generalized Aztec
pillow to be the restriction of the digraph of an Aztec diamond to the vertices that are on
the interior of the pillow. For a visualization, see the example of Figure 4.10.

The underlying hope going into the Hamburger Theorem was that it would allow us
to prove Propp’s Conjecture. The same reasoning as above implies that domino tilings of
generalized Aztec pillows can be counted using the Hamburger Theorem.
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Figure 4.11: The equivalence between paths in D and lattice paths in the first quadrant

Creating the hamburger graph H that corresponds to the Aztec pillow in Figure 2.2
gives Figure 4.5b. Counting the number of paths from v; to v; and from wy; to wiy; in
successively larger Aztec pillows gives us the infinite upper-triangular array S = (s; ;) of
“modified Schroder numbers” defined by the following combinatorial interpretation. Let
s;; be the number of paths from (7,4) to (j,7) using steps of size (0,1), (1,0), and (1, 1),
not passing above the line y = z nor below the line y = z/2. This equivalence is shown in
Figure 4.11. The principal 7 X 7 minor matrix S; of S is
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112 5 16 57 2247
01 2 5 16 57 224
0012 6 21 8

S;=|l0001 2 6 22
0000 1 2 6
0000 0 1 2
0000 0 0 1,

The Hamburger Theorem proves that the number of domino tilings of an Aztec pillow of
Sn ITL

h
I, J.S.dn ], where
Sy is the n X n principal submatrix of S and J, is the n X n exchange matrix. As in the
case of Aztec diamonds, we can calculate the reduced hamburger matrix through a Schur
calculation. The inverse of Sy is

order n is given by the determinant of the 2n X 2n matrix My = [

1 -1 0 0 0 0
0 1 -2 -1 -2 =5
5_1:001—2—2—5
6 0o 0 0 1 —2 -2
0O 0 0 0 1 -2
0 0 0 0 0 1]

and the resulting reduced hamburger matrix for AF; is

2 1 2 5 16 57
-2 2 2 5 16 57
-2 -2 2 2 6 21
-5 -2 -2 2 2 6
-5 -2 -1 -2 2 2

o 0 o0 0 -1 2

This gives us a much faster way to calculate the number of domino tilings of an Aztec
pillow than was known previously. We have reduced the calculation of the O(n?) x O(n?)
Kasteleyn-Percus determinant to an n X n reduced hamburger matrix. To be fair, the
Kasteleyn-Percus matrix has —1, 0, and +1 entries while the reduced hamburger matrix
may have very large entries, which makes running time comparisons difficult theoretically.
Experimentally, when calculating the number of domino tilings of AP;4 using Maple 8.0
on a 447 MHz Pentium III processor, the determinant of the 112 x 112 Kasteleyn-Percus
matrix takes 25.3 seconds while the determinant of the 14 x 14 reduced hamburger matrix
takes less than 0.1 seconds.

Whereas we now have a very understandable determinantal formula for the number of
tilings of the region, this does not translate into a proof of Propp’s Conjecture because
we can not calculate the determinant of the sequence of matrices {M,,} explicitly. We can
not apply a J-fraction expansion as Brualdi and Kirkland did since the reduced hamburger
matrix is not Toeplitz or Hankel.

An intriguing consequence of the Schur calculations is the pattern that is apparent
between the modified Schréder matrix S, and its inverse S,!. In particular, the same
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Figure 4.12: Proof of the recurrence in the modified Schroder numbers

terms appear in both, even if shifted by a row and a column. This implies that there is
a (two-dimensional) recurrence to determine the array of modified Schréder numbers and
that we do not need to calculate them via their combinatorial lattice path definition which
can be computationally complicated. The recurrence to calculate s;,, in terms of values
si,; with j < n is given by the following theorem.

Theorem 10. For m,n > 0, let sy, , be the number of (0,1), (1,0), (1,1) paths from (m,m)
to (n,n) that do not pass above the line y = = nor below the line y = x/2. When m < n,
the terms sy, n satisfy the recurrence

n—1
Sm,n = Sm,n—1 1 E Sm,kSk—1,n—2
k=m
ifm>1 and
n—1
S$0,n = So,n—1 1 § 80,kSk—1,n—2
k=1
if m=0.

Proof: We provide a combinatorial proof. The left-hand side counts the number of paths
from (m,m) to (n,n) in our restricted lattice. For the right hand side, we count this quantity
in a second way. Conditioning on the last step of a path, we either have that the last step
is diagonal or is vertical. (See Figure 4.12.) By definition, there are s, ,—1 paths such that
the last step is diagonal. Otherwise, the last step is vertical, in which case the path must
cross the liney = z — % horizontally at some last time. Let this last horizontal step be of the
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Figure 4.13: A simple generalized hamburger graph

form (k,k) — (k+ 1,k). Then the number of paths from (m,m) to (k, k) in our restricted
lattice is sy, ; while the number of paths from (k + 1,k) to (n,n — 1) without crossing the
liney =2 —1nory = x/2is sy_1, 2. (Notice that the indices are off since the origin
of the newly restricted lattice has moved.) Summing over all valid values of k proves the
recurrence. °

In terms of more exotic generalized Aztec pillows P with a 2 x 2n central belt, it is
clear that the Hamburger Theorem produces a 2n x 2n matrix whose determinant is the
number of tilings of P. The discussion about Schur complements implies that we can find
an n X n reduced hamburger matrix. Future examination of these hamburger matrices may
help derive an explicit formula for the enumeration of domino tilings of Aztec pillows and
other related regions.

4.6 Counterexamples to Possible Extensions of the Hamburger Theorem

The structure of the hamburger graph as presented in Section 4.2 seems restrictive, so the
question naturally arises whether it is somehow necessary. Can the edge set E3 between
G1 and G5 be an arbitrary bipartite graph? The answer in general is no. Take for example
the simple graph H in Figure 4.13. As one can count by hand, there are 10 distinct cycle
systems in H, as enumerated in Figure 4.14. Creating the hamburger matrix that would
correspond to this graph gives

1 1 1 100
0 1 1 010

0 0 1 001
MH_—100100
0 0 -1 110

0 -1 0 1 1 1|

This seems the most logical extension of the matrix since the lower left block of the matrix
describes paths from wy, ws, and wg to v1, v2, and vz and we have changed no other block
of the matrix.

The determinant of this matrix is —5. Even though one might expect there to be a
new sign convention on cycle systems in generalized hamburger graphs, any sign convention
would necessarily conserve the parity of the number of cycle systems. Therefore there is no
+1/—1 labeling of the cycle systems in Figure 4.14 that would allow det My = ) .. sgn(c).
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Figure 4.14: The ten cycle systems for the generalized hamburger graph in Figure 4.13

This means that either the matrix for this generalized hamburger graph is not correct or
that the theorem does not hold in general.

The only hope that exists is what happens when one considers the difference between
even and odd permutations. In the given counterexample, the edge set F3 sends vertex wy
to vertex v1, ws to vs, and wg to ve. This can be thought of as an odd permutation of the
natural edge set (sending w4 to v1, ws to ve, and wg to v3). In all the calculations so far,
whenever the permutation of the natural edge set is even, the parity of the hand-counted
cycle systems is equal to the parity of the determinant of the matrix. A sign convention for
these graphs has not been found that explains the calculated determinant, but being equal
in parity allows for hope of a possible extension to the Hamburger Theorem.
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Chapter 5
FUTURE WORK

There are various avenues of future study available. Many of them are based in ex-
perimental results which have not led to completely explicit conjectures. In Section 5.1,
we present a generalization of Propp’s Conjecture. Experimental results and conjectures
are presented in Sections 5.2 and 5.3. Lastly, Section 5.4 deals with the random tilings of
Aztec Pillows. Each of these areas has the possibility of producing additional fruitful lines
of research.

5.1 Generalizing Propp’s Conjecture

The motivation of the study of Aztec pillows was Propp’s Conjecture for 3-pillows, as
presented in Section 2.1. Through experimental calculations, we can expand and extend
the conjecture.

For one, we can extend the conjecture to odd pillows. As mentioned in 2.1, we use the
notation AP, to represent the n-th g-pillow for ¢ odd. This is a centrally-symmetric region
with steps of length ¢ and central belt of size 2 x 2n. Calculating the number of tilings
of AP? for n up to 70, and the number of tilings of APT and AP? up to 40 gives strong
evidence that #AP] for ¢ odd is always a larger number squared times a smaller number.

Additional structure in these “smaller numbers” also appears. Propp’s Conjecture gives
an explicit recurrence for the smaller number values when ¢ = 3. In the case of ¢ = 5,
there is no linear, constant coefficient k-th degree recurrence for any k£ up to 20. However
in each case (¢ = 5, ¢ = 7, and ¢ = 9) the structure is undeniable. Plotting the values of
#AP]/#AP!_, gives a remarkable damped sinusoidal graph converging to some number
p- In addition, plotting the values of #AP{/#AP!_| depending on whether n is even or
odd gives two damped sinusoidal graphs that converge to some values 7 and 27 respectively.
This implies p = 272. Approximate values for p are given in Table 5.1. We have included
the values for Aztec diamonds (¢ = 1) and the original Aztec pillows (¢ = 3).

Approximate limit of s,,/sp_2
2

2.890053636

3.0821372

3.145

3.18

© g ol w =3

Table 5.1: p values for various values of g
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Appendices C and D contain the raw data.

Even more appears to be true. Since odd pillows are rotationally symmetric, we can
apply Corollary 6 and learn that the number of tilings of such a region is the sum of two
squares. Calculating the squares via Theorem 1 gives us a better understanding of the larger
numbers that appear in Propp’s Conjecture. In particular it appears that the larger number
divides both the squares in the sum of squares. This implies that the smaller number is also
a sum of squares, which may lend some insight into its recurrence formula.

This allows us to formulate a new and improved conjecture about odd pillows.

Conjecture 11. The number of tilings of AP} is a larger number squared times a smaller
number. Write #AP] = (2s,. Then s, satisfies the following structure. The ratio of
Son+1/82n 10 Sonto/Sont1 i exactly 2 in the limit. In addition, we know that #AP] = a2 +b?
for explicit values a,, and by, given by Theorem 1. The value £, from above divides both a,

and by,.

Remark. This conjecture only appears to apply in its most general form to the so-called
“odd pillows”. The next nicest regions that one might consider would be the generalized
Aztec pillows such that steps on all borders are of size 3, which we will denote AP23. The
first few values give the data in Table 5.2. From these figures it is clear that the number
of tilings can not be written generally as a larger number squared times a smaller number
since there are no relatively large square factors.

n #AP?
1 2
2 5
3 13
4 61
5 22.101
6 5-615
7 23 . 4877
8 5-17-8329
9 2. 7773253

10 1601 - 344269

Table 5.2: Values of #AP>® are not of the form s,

Remark. It is unclear how we might determine the regions we might consider “even”
pillows, such as (2,2,...,2);. In particular, the pillow (2,2)9 is untilable since there are
more squares of one color than another. This is the case for all even k . In addition, pillows
such as (2,2,2)3 restrict the structure of tilings greatly. Starting in the bottom right, the
dominoes covering the three white squares must also cover three of the four adjacent black
squares. The remaining black square is covered by a domino that also covers one of the four
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Figure 5.1: A (2,2,2)3 pillow breaks into two independent halves

Figure 5.2: A (3,3,2)3 pillow breaks into three independent pieces

adjacent white squares. The remaining three squares have no choice but to be paired with
the three adjacent black squares. This breaks the region into pieces, each which must be
tiled independently. This argument is presented visually in Figure 5.1.

A similar argument proves that the number of tilings of a (3,3, ..., 3,2); “pillow” is (2k+
1)k for k > 2 by breaking down the “pillow” into k pieces that must be tiled independently.
(See Figure 5.2.) This is why we do not consider such pillows in our study. We also note
that the number of tilings of a (3,3,...,3,0); “pillow” is exactly one since all dominoes are
forced by the boundary conditions.

One last interesting combinatorial piece of information that appears experimentally deals
with the reduced hamburger matrix presented in Section 4.5.

Conjecture 12. Any (n—1) x (n—1) submatriz of the n X n reduced hamburger matriz for
an ordinary Aztec pillow AP3 has as a factor of its determinant the value £, from above.
In addition, ¢2 does not divide this minor.

This tells us that the combinatorial structure is intertwined with this ¢, so £, is not as
mysterious as before.
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Figure 5.3: Two applications of the Gessel-Viennot method to APs
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5.2 Experimental Results from the Gessel-Viennot Method

The combinatorial approach using the Gessel-Viennot Method presented in Section 4.5 leads
to two determinantal formulas for the number of tilings of an Aztec pillow. In this section,
we discuss these results.

Given an ordinary Aztec pillow, the vertical and the horizontal approaches (Figure 5.3)
give two distinct determinantal formulas for the number of tilings of the region. For the
Aztec pillow AP,, we call the former matrix the vertical Gessel- Viennot matriz and denote
it Vi,; whereas, we call the latter matrix the horizontal Gessel-Viennot matriz and denote
it H,.

The (larger) n x n vertical Gessel-Viennot matrix has a very nice structure related to
crystal ball sequences. Let D = (d;;) be the matrix

22 2 2 2 2
14 8 12 16 20
0 2 10 26 50 82
01 8 32 8 192
00 2 18 82 258

p_ |00 1 12 72 292
00 0 2 26 170 |’
00 0 1 16 128
000 0 2 34
000 0 1 20
000 0 0 2
(000 0 0 1 |
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and F = (e;;) be the matrix

1 1 1 1 1
6 7 8 9 10
3 18 25 32 41
2 25 38 63 88
16 41 66 129
11 20 61 102
24 85
15 28
2 17
1
0

—_ =

&
I
CcCoocococoOoR N~

S O~ N

2
0 1

SO OO OO F N W
SO O D OO N U
SO OO O = DN~ 0o ot

9
2
1 13
0 2
0 1
0 0
0 0

jen)

Notice that the i-th row d; of D starting at the first non-zero entry has the generating
function

id, b 2(1+ JT)Z/(l - i)i+1 if 7 is even
LT T (L)t /(1 - )t fiis odd
]:

and that the i-th diagonal e; of E (starting at the diagonal of 1’s and going upwards) has
the generating function

i o gt — (1+2)/2/(1 —q)t/2H if ¢ is even
= LI T 1 +$)(i+1)/2/(1 _ Z-)(z'+1)/2 if 7 is odd

n

For any n, define k to be k = [g] Define B,, to be the principal n x k& submatrix
of D. Define C),, to be the n x n — k matrix such that its /-th column is of the form

[0,...,0,e1,n,€2n,-- -, €9 2 | _2p42.0]-
Theorem 13. The vertical Gessel-Viennot matriz V,, for AP, has the form V,, = [By,|Cy].

As an example, when n = 7, we have

22 2 2/0 0 0
14 8 121 0 0
0210 26/8 0 0

Vp=101 8 3225 1 0
00 2 18[38 8 0
00 1 12[41 25 1
(00 0 2|20 38 8|

Proof: We consider the lattice in Figure 5.4, where starting at (0,0), you can take steps in
the directions (1,0), (0,1), and (1,1). These steps are called right, up, and diagonal steps.
The number of paths from (0, 0) to (4, j) in this lattice is the Delannoy number D(i, j), with
generating function

1
SO T S —
n>0,k>0 —rTy-y
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Figure 5.4: The underlying base lattice in Aztec pillows
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Figure 5.5: Two particular sublattices of the base lattice in Figure 5.4

and is referenced as Sequence A008288 in the Online Encyclopedia of Integer Sequences
[38].

We determine subsets of this base lattice that appear while counting lattice paths in
the vertical implementation of the Gessel-Viennot method to Aztec pillows. From their
combinatorial interpretations, the entries in the matrices D and F will then be proved. The
key idea is that paths starting from the vertices on the up-steps of length three will translate
to paths in sublattices of the form in Figure 5.5a; whereas, paths starting from the vertices
on the down-steps of length one will translate to paths in sublattices of the form in Figure
5.5b.

In Figure 5.5a, we consider a rectangular subset of the lattice with one edge removed
and vertices marked a, ¢, and d. We will determine the number of paths from a to either
cor d. A path from a to ¢ in this sublattice can be seen as a path from (0,0) to (4,7) in
the base lattice for some ¢ and j. In our example, these values are : = 3 and 7 = 3. In
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particular, the number of paths from a to ¢ is D(i, j) for the correct values of i and j.

On the other hand, placing a at the origin in the base lattice and considering the number
of paths to the representation of d overcounts the number of paths from a to d in the
sublattice by exactly the number of paths from a to c¢. In particular, if ¢ and j are defined
as in the previous paragraph, the number of paths from a to d is D(i + 1,5) — D(4, j).

In Figure 5.5b, we consider a rectangular subset of the lattice with two edges removed
and vertices marked a, b, ¢, and d. We will determine the number of paths from a to either
c or d. As before, we can lay this sublattice over the lattice from Figure 5.4 so that a is on
(0,0) and c is on some lattice point (i, 5) for some values of 7 and j. (Again, in our example
i =3 and j = 3). The number of paths from (0,0) to (¢,j) now overcounts the number of
paths from a to ¢ by exactly the number of paths from b to ¢. This implies that the number
of paths from a to ¢ is D(i,5) — D(i,5 — 1).

To count the number of paths from a to d, we realize that we can use similar arguments
to the above cases and inclusion-exclusion. We have that the number of paths from a to d
in our sublattice is D(i + 1,j) — D(i,5) — D(i + 1,5 — 1) + D(z,5 — 1).

The entries of V' come directly from overlaying these sublattices on an Aztec pillow.
Concretely, the number of paths from initial vertex ¢ to terminal vertex j for 1 < ¢ < k and
1<j<2—1is

V-—{ D(j,i) — D(j,i — 1) if j is odd
Wl D(j+1,4) —D(j,i) —D(j+1,i — 1)+ D(j,i—1) ifjiseven °
When j = 2, the number of paths from initial vertex i to terminal vertex j is 1.

The other half of V,, depends on whether n is even or odd. If n is even, the number of
paths from an initial vertex ¢ to terminal vertex j for k+1 <i<mnand 2(1 —k) <j<nis

- [ DG —-206—-k)+1,i—7/2) if j is even
WTY DG -2 —k)+1,i—(j—1)/2) = D(j — 2(i — k)i — (j —1)/2) if j is odd
When j = 2(: — k) — 1, the number of paths from initial vertex 4 to terminal vertex j is 1. If

n is odd, the number of paths from an initial vertex ¢ to terminal vertex j for k+1<1i < n
and 2(1 — k) <j <nis

| DG —2(i—k),i—j/2) if j is even
W\ DG —26i—k),i—(j—1)/2) =D —2(i —k) = 1,i — (j — 1)/2) ifj is odd
This gives explicit formulas for the entries of the vertical Gessel-Viennot matrices V,,.

Remark. Very similar arguments can give explicit formulas for the entries of vertical
Gessel-Viennot matrices for any odd pillow, not just the 3-pillows.

An interesting phenomenon is how these vertical Gessel-Viennot matrices relate to the
horizontal Gessel-Viennot matrices. Unlike its vertical counterpart, the (smaller) k x k
horizontal Gessel-Viennot matrix does not have a predictable form. For example, when
n =7, the 4 x 4 horizontal Gessel-Viennot matrix H7 is

8266 846 68 2

Hy = 4498 488 46 2
1372 170 22 2

238 34 6 2
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However, it appears that the horizontal Gessel-Viennot matrix can be derived from the
vertical Gessel-Viennot matrix with judiciously chosen row and column operations.

When n = 7, the operations that transform the vertical determinant into the horizontal
determinant are as follows. Writing r; as the i-th row and r; as the j-th column, the
elementary row operation of adding &k times the j-th row to the i-th row will be represented
by (r; + kr;).

Cy — 1104
Cg — 2504
cr —Tey -
co—Tes [2 2 2 2 -2 104 -216
¢ 5 |1 4 8 12 —131 617 —1280
cr—3cg | 0 2 10 26 —278 1296 —2680
| — 0 1 8 32 -—327 1490 -3059
0 0 2 18 —-160 678 —1360
0 0 1 12 -91 362 —-T14
|00 0 2 =2 2 -2
5 — 271¢
T4 — 87‘6
r3 — 107‘6
ro — 8’]"6
T — 2’/‘6
r3 — 27‘4 N _
o — 41y 0 0 0 —238 1372 —4498 8266
i — 2ry 1 0 0 172 —-1007 3345 —6180
i — 2y 000 34 —170 488 —846
— 01 0 —-64 401  —1406 2653
000 -6 22 —46 68
0 01 12 —-91 362 —714
000 2 -2 2 -2 |

Expanding the determinant about its first, second, and third columns yields

—238 1372 —4498 8266
34 —170 488 —846
—6 22 —46 68

2 -2 2 -2

Multiplying the first and third rows and the second and fourth columns by —1 yields a
matrix that clearly has the same determinant as H7. Notice that the coefficients in the row
and column operations are all integers arising in crystal ball sequences. A similar set of
elementary row operations reduces V;, to H,, when n = 6 and n = 8. This leads us to state
the following conjecture for ordinary Aztec pillows in general.

Conjecture 14. The vertical Gessel- Viennot determinant calculation reduces to horizontal
Gessel-Viennot determinant calculation.
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Figure 5.6: Extending lattice paths to the horizontal axis

An interesting variant of the Gessel-Viennot approach is used for the case of an Aztec
diamond in the work of Eu and Fu [11]. Consider drawing a horizontal axis so that it
coincides with the bottom edge in the lattice arising in the horizontal application of the
Gessel-Viennot method. Extending the other n — 1 paths down to this horizontal axis, there
is a new interpretation of the paths we are constructing. We now count the number of sets
of n non-intersecting paths from 1 — 2i to 27 — 1 using steps of length (1,1), (1,—1), or
(2,0). See Figure 5.6 for reference.

By the Gessel-Viennot method on this new lattice, the large Schréder numbers appear
again; the number of non-intersecting paths is the determinant of a Hankel matrix:

S1 $2 tt Sp-1 Sn
52 53 Sn, Sn+1
det T . )
Sp—1 Sn Sn—-2 S2n—1
$n Sp4+1 "7 S2p—1  S2n |

where s; is the i-th large Schroder number. Notice that this matrix is different from the
matrix Brualdi and Kirkland found since the entries are all positive.

We can apply the same method to any non-symmetric generalized Aztec pillow such that
the bottom half is of the form of an Aztec diamond. The top half may be of any shape.
Notice by removing the symmetry the values in the matrix will no longer be predictable
as with the case of the Aztec diamond, however our matrix will have entries that are all
positive. The only thing we know is that the upper left half of the matrix (including the
skew diagonal and everything above) will have the same entries as the corresponding Hankel
matrix with large Schroder number values since the bottom half of the pillow is like an Aztec
diamond.

As an example, the number of tilings of the region in Figure 5.7 can be calculated by
the following determinant of with positive integral entries
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Figure 5.7: Applying Eu and Fu’s method to a generalized Aztec pillow

2 6 22
det | 6 22 90
22 89 384

The determinant of this matrix is 32, which is the number of tilings of the corresponding
generalized Aztec pillow.

This method will not apply directly if we have a generalized Aztec pillow that does
not have a bottom half with the form of an Aztec diamond. The lattice paths from the
horizontal application of the Gessel-Viennot method do not lift uniquely to paths in the
new lattice.

5.3 Experimental Results from the LU Decomposition of a Kasteleyn-Percus
Matrix

As discussed in Section 3.3, the Kasteleyn-Percus matrix for an Aztec pillow is alternating
centrosymmetric. This implies that #AP, = det(B +iC) det(B —iC). For the Aztec Pillow
APy, the matrix B + iC equals

,_.
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-
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Taking the LU factorization of B + iC we get the following values for L and U.

1 0 0 0 0 0 0 0 0 0 0 0

{ i 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 A 1 0 0 0 0 0 0 0 0

-1 0 0 -23 1 0 0 0 0 0 0 0

L= 0 -1 0 -1 27 1 0 0 0 0 0 0
- 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 i 1 0 0 0 0

0 0 1 0 0 0 0 —21 1 0 0 0

0 0 0 1 0 0 0 -1 1429 1 0 0

\- 0 0 0 0 1 0 0 1-24 -2 1 1 0

0 0 0 0 0 1 -1 -5 51 3/4—"T7i/4 —133/260 — 271i/260 1
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1 0 0 i 0 0 0 0 0 0 0 0 1
’V 0o -1 0 1 A 0 0 0 0 0 0 0
0 0 1 0 0 0 0 —i 0 0 0 0
0 0 0o -1 o0 0 0 -1 —1 0 0 0
0 0 0 0 1 0 0 -2i 2 —i 0 0
U= 0 0 0 0 0o -1 0 -5 —51 -2 —1 0
0 0 0 0 0 0 1 0 0 0 0 -1 ’
0 0 0 0 0 0 0 -1 0 0 -1 i
0 0 0 0 0 0 0 0 1 -1 —219 -2
0 0 0 0 0 0 0 0 0 —-24+24 —-5-21 2454
0 0 0 0 0 0 0 0 0 0 T—41 —4—-61
L 0 0 0 0 0 0 0 0 0 0 0 —1311/260 + 1337/260

Taking clues from LU factorizations of larger B + ¢C matrices we decide to factor the
matrices a little differently. If we set L' and U’ to be the nice parts of L and U and then
calculate what matrix F we would have if we set B + iC = L'EU’, we see that F has an
especially nice form. In terms of AP, if we set L' and U’ to be:

r 1 0 0 0 0 0 0 0 0 0 0 0 A
i 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 i 1 0 0 0 0 0 0 0 0
—1 0 0 —21 1 0 0 0 0 0 0 0
= 0 -1 0 -1 214 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 ’
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
L O 0 0 0 0 0 0 0 0 0 0 14
r 1 0 0 i 0 0 0 0 0 0 0 0
0 -1 0 1 i 0 0 0 0 0 0 0
0 0 1 0 0 0 0 —1 0 0 0 0
0 0 0 —1 0 0 0 —1 —1 0 0 0
0 0 0 0 1 0 0 —21 2 —1 0 0
U’ _ 0 0 0 0 0 —1 0 -5 —51 —2 —1i 0
0 0 0 0 0 0 1 0 0 0 0 0 ’
0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
L O 0 0 0 0 0 0 0 0 0 0 -1 J
then F becomes:
r 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
E= 0 0 0 0 0 1 0 0 0 0 0 0
- 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 -1 —1
0 0 0 0 0 0 0 0 1 1 —21 2
0 0 0 0 0 0 0 0 —1 1—24 —5 —51
0 0 0 0 0 0 0 1 —214 6 1—-161 16
L O 0 0 0 0 0 -1 —21 —6 —214 —57 1—574¢ J

The matrices L and U both have determinant 1. Notice that E is a block diagonal matrix
so that its determinant reduces to a non-trivial determinant of a 6 x 6 matrix. Amazingly,
the modified Schréoder numbers from Section 4.5 make another appearance! This gives
a further indication that the modified Schréder numbers are somehow embedded in the
Kasteleyn-Percus matrix of an ordinary Aztec pillow. Or perhaps this implies that the LU
decomposition of the Kasteleyn-Percus matrix gives some combinatorial information about
the region itself.

Returning to this n x n submatrix E' of E, we see that det E = det(B +1iC), so that the
number of tilings of the Aztec pillow AP, is det E' - det E’. Let S, be the n X n principal
submatrix of the modified Schroder numbers S as described in Section 4.5 and let J,, be the
n X n exchange matrix. We have the following conjecture.
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Conjecture 15. The number of tilings of the Aztec pillow AP, is equal to det E' - det E',
where E' is the n X n matriz Sy, + 1J,.

It is unclear how to prove what the form of the L' FU’ decomposition should be. It is
also tantalizing that this matrix is so close to a triangular matrix yet its determinant seems
difficult to calculate. If this problem were rectified, this would lead to a new and probably
faster way to calculate the number of tilings of an ordinary Aztec pillow. It also gives hope
that a similar formula would work in the case of any rotationally symmetric region, and
that there is some sort of combinatorial interpretation similar to the Hamburger Theorem
that is in play with this matrix. One piece of information that appears to be useful in terms
of proving a general formula for the L'EU’ decomposition is that the triangular blocks
of entries that appear off the diagonal in L (and thus L') are in absolute value modified
Schroder matrices and the triangular blocks of entries off the diagonal in U are in absolute
value the inverses of modified Schroder matrices.

5.4 Random Tilings of Aztec Pillows

A final subject of future research has to do with the idea of “random tilings”. In terms of
an Aztec diamond, if we consider the set of all tilings of AD,, and pick one uniformly at
random, an interesting phenomenon appears. Consider the inscribed circle C, in AD,,. As
n goes to infinity, outside this circle C,, all the dominoes are fixed with probability tending
to 1. That is, the squares in AD,, outside C,, to the right or to the left are all covered with
vertical dominoes and the squares in AD,, outside C,, above or below are all covered with
horizontal dominoes. For a visualization, see Figure 5.8. This property of random domino
tilings of Aztec diamonds was first proved by Jockusch, Propp, and Shor in [19]; a slightly
weaker result was proved for lozenge tilings of hexagons by Cohn, Larsen, and Propp in [8].

Given this framework, we wish to determine the properties of a random tiling of an Aztec
pillow. Figure 5.9 gives an example of a randomly tiled APjgq. It appears to have a “frozen
region” near the top and near the bottom of the pillow; however, the interior structure is
not clear enough to even formulate a conjecture.

This concludes our study of Aztec pillows. We have learned many new things yet many
mysteries remain for the curious pattern-seekers.
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Appendix A
3-PILLOW DATA

A.1 Table of Values

Propp calculated the number of tilings of ordinary Aztec pillows (3-pillows). A table is
shown below for completeness. The non-square part was calculated using a product of
the bold faced terms. When the power of a bolded factor is not bold, then the power
of the factor as a factor of the non-square part is less than the total power shown. For
example, #APs; = 210 and s5 = 2%, so the 10 in the power of 2 is not bolded. However,
#AP; =2%.32.5.192 and s; = 32 - 5, so the 2 in the power of 3 is bolded.

#APS Non-Square Part

n

1 2 P
2 5 5
3 22 .5 5
4 32.13 13
5 210 16
6 192 . 37 37
7 24.32.5.192 45
8 109 - 2632 109
9 29.3%.5.112 .13 130
10 3%.313.9112 313
11 26.32.13.29.43%.712 377
12 5-11%.312 . 1512 - 181 905
13 228 .72 . 173 . 312 1088
14 1012 - 1032 - 2617 - 83632 2617
15 28 .5.17%.192.37.532.712 . 892 3145
16 312 . 7561 - 272832 - 351492 7561
17 217 .32 .5.112.19% . 592 . 612 - 101 - 241° 9090
18 310.52.13.292.41%.43%.2112 . 17232 21853
19 210. 232 . 432 . 109 - 241 - 2632 - 4392 . 4612 . 5932 26269
20 472 . 137 - 461 - 3139492 - 86472 - 2989992 63157
21 234 .34 .53 .74 .112.13% . 192 . 232 . 472 . 712 . 73 . 1672 75920
22 510.72.149-103992 - 395512 - 552012 - 100992 182525
23 2'2.3%.5%.792.313-701-9112 . 14292 - 14812 - 17412 - 36912 219413
24 192 .37-53% . 1072 - 269 - 4312 . 8092 - 893172 - 617232 . 57792 527509

Table A.1: Number of tilings of 3-pillows AP3 up to n = 24

A.2 Supplementary Data for 3-pillows

For comparison with the g-pillows for q equal to 5, 7, or 9 presented in Appendices C and
D, we include the following data. We let #AP, = 25, as in the previous section. Tables
A.2 and A.3 give the ratio of consecutive terms of s, split into the two cases when n is even
or n is odd. It appears that each table has a limiting value, and that the limiting value
for Table A.2 is twice that of the limiting value of Table A.3. A more illuminating picture
comes from the ratio of s,/s,_o. This data is presented numerically in Table A.4 and is
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plotted in Figure A.1. The intriguing property of this plot is the appearance of a damped
sine curve. As we might expect, the limit of this apparent damped sine curve is the largest
real root of z* — 223 — 22? — 2z + 1.

n Sn/Spn—1

2 2.500000000000000000000000000000000000000
4 2.600000000000000000000000000000000000000
6  2.312500000000000000000000000000000000000
8 2.422222222222222222222222222222222222222
10 2.407692307692307692307692307692307692308
12 2.400530503978779840848806366047745358090
14 2.405330882352941176470588235294117647059
16 2.404133545310015898251192368839427662957
18 2.404070407040704070407040704070407040704
20 2.404240740035783623282195744032890479272
22 2.404175447839831401475237091675447839831
24

26

28

30

32

34

36

38

40

2.404182979130680497509263352672813370220
2.404187575104791882847563687286513150632
2.404184707727985812700361503308096309938
2.404185383839238242544347237662525979989
2.404185437967475048561645638911720014192
2.404185333868926344733673210350387690825
2.404185371911035420400679242189155579214
2.404185368103824749725513783419278751335
2.404185365177531615032303625900585022565

Table A.2: Ratios of s,, to s,,_1 for n even

n Sn/Spn—1

3 1.000000000000000000000000000000000000000
5 1.230769230769230769230769230769230769231
7 1.216216216216216216216216216216216216216
9 1.192660550458715596330275229357798165138
11 1.204472843450479233226837060702875399361
13 1.202209944751381215469613259668508287293
15 1.201757737867787542988154375238823079862
17 1.202221928316360269805581272318476392012
19 1.202077517960920697387086441220885004347
21 1.202083696185695964026157037224694016499
23 1.202098342692781810710861525818381043693
25 1.202091338725974343565702196550201039224
27 1.202092580724932093781095669547775083321
29 1.202092888079784492355711081943608772554
31 1.202092607925447612983370072412989087280
33 1.202092690948334484360455771414844893944
35 1.202092688981407483370107391998088821455
37 1.202092679882664742504530487175249692821
39 1.202092684009664090498879348781539957065

Table A.3: Ratios of s, to s,_1 for n odd



Sn/Sn—2
2.500000000000000000000000000000000000000
2.600000000000000000000000000000000000000
3.200000000000000000000000000000000000000
2.846153846153846153846153846153846153846
2.812500000000000000000000000000000000000
2.945945945945945945945945945945945945946
2.8888888888388883888888888888888888888889
10 2.871559633027522935779816513761467889908
11 2.900000000000000000000000000000000000000
12 2.891373801916932907348242811501597444089
13 2.885941644562334217506631299734748010610
14 2.891712707182320441988950276243093922652
15 2.890625000000000000000000000000000000000
16 2.889186090943828811616354604508979747803
17 2.890302066772655007949125596184419713831
18 2.890226160560772384605210950932416347044
19 2.889878987898789878987898789878987898790
20 2.890083741362741957625955246419255937400
21 2.890098595302447752103239559937568997678
22 2.890020108618205424576848172015770223411
23 2.890055321390937829293993677555321390938
24 2.890064374743185864950006848376934666484
25 2.890047535925400956187646128533860801320
26 2.890053060706073261309285718347933400188
27 2.890056046704535777478497557221572146333
28 2.890052599852151057802114620318800101540
29 2.890053338789987040447445603983357206193
30 2.890054151538515137078812855923407540997
31 2.890053477995553192517763062496979071004
32 2.890053543062706537069298131878858967876
33 2.890053742665122171255151212533644288142
34 2.890053617529017636054327030922027751552
35 2.890053612800160587482540293239434263681
36 2.890053658530301780775097497006191049198
37 2.890053636655237580404356706913562504139
38 2.890053632078617502414569695520621483687
39 2.890053642000688949036608049704793348849
40 2.890053638483013380554193573197159505526

© 00O U WS

Table A.4: Ratios of s, to s,_2
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Figure A.1: Damped sinusoidal behavior observed in 3-pillows



3

Appendix B
AZTEC PILLOWS OF THE FORM (1,...,1,3,1,...,1)

4 5 6 7 8

N Y N et N e N, Y mata N
G Us)n (1,3, U)n  (1,L,3,U8)n  (L,L1L,3,U8)n  (L,...,,3,U8)n  (L...,1,3,0'8)a  (1L,...,5,3,0'8)n  (1,...,01,3,08)n  (1,...,1,3,1s)

O O 00O O Wi -

—_

9
10 25
17 65 113
26 146 346 481
37 292 932 1637 1985
90 933 2248 5013 7218 8065
65 905 4937 13897 24201 30529 32513
82 1450 10018 35218 74530 108970 126034 130561
101 2216 19016 82436 211460 363080 469160 513125 523265
122 3257 34112 179972 556040 1126148 1656128 1963193 2072698

0.



C.1

As the first previously unknown case of nicely behaving generalized Aztec pillows, we present
as much data as collected about AP2, also called 5-pillows. Table C.1 contains the number
of tilings of APS for n up to 40, while Table C.2 continues this data for n up to 70. The

Appendix C
5-PILLOW DATA

Table of Values

71

non-square part was calculated using a product of the bold faced terms. The same bolding

convention is used as in Appendix A. The factorization of and the non-square part of AP?

was calculated using PARI, as outlined in Section C.3.

n :;!;‘:AP;ri Non-Square Part
1 2 2
2 5 5
3 13 13
4 22.13 13
5 32 .29 29
6 2.72.17 34
7 26.32 .52 100
8 2.5%.72.13 130
9 32.5.29% .61 305
10 2%.32.192.292 361
11 36.412 . 881 881
12 22 .5.312 .892 . 229 1145
13 218 .36 .132 . 1453 2906
14 22 . 792 .9532 . 3557 3557
15 192 - 8669 - 430032 8669
16 26 .3%.172 .37 .98873> 10693
17 26893 - 49644383 26893
18 210 .53 . 421 . 140108512 33680
19 235 .55 . 521 . 62772 83360
20 210 .52 . 372 . 257 . 2580071632 102800
21 32 .53 .1677% . 5657 - 1077756112 254565
22 28 .32 .5.229.277 - 52732 . 696893572 317165
23 36.829-953 13212 . 689472 - 1117912 790037
24 24 .32.17.232.292.312.109 - 35932 . 178947631> 980237
25 221 .112.316 .97 . 17892 - 12517 - 2357232 2428298
26 24 .32 .5.172-312 - 61 - 1097 - 2211657330256441°> 3011265
27 13- 172 - 575677 - 182318812 - 3999607493392 7483801
28 210 .132 . 1272 . 9301217 - 1007998365484088412 9301217
29 34.202.137 . 2081 - 121496332 - 524888608699277> 23092857
30 29 .13.29.1132 . 37993 - 14717466432 - 3901319205691° 28646722
31 244 .5.112 . 149 - 23857 - 11855232 - 15733992 - 109390212 71093860
32 29 .112 . 592 . 1493 . 296237 - 75491692 - 2951523929123521> 88278626
33 32.5-149 - 498312 - 294317 - 75169332 - 18151295049841248532 219266165
34 212 . 53 . 54442097 - 806196277492 - 7559882680695003557> 272210485
35 3%.5-192 1092 - 593 - 3581225321 - 2018007132 - 33560756234042814172 675690885
36 26 .34 .5.167733113 - 12030040715872 - 217164367297797072143> 838665565
37 231 .312 432 . 1092 - 1672 - 18973 - 54877 - 10144636065450948082230019> 2082362642
38 26 . 2412 . 579012 - 2585391353 - 2768476516467832681666745525015532 2585391353
39 112 .37 - 14512 - 458172 - 1433821 - 61196713470282724386718204210611997> 6419216617
40 2% .1632.229.277-27072 . 125617 - 3496632 - 12787012 . 28254892 . 121289124706136773812 7968263161

Table C.1: Number of tilings of 5-pillows AP> up to n = 40



n #(5,...,5,5)n Non-Square Part
41 3%.61% . 717 .119817 - 590713 - 955369072878258614322170888390376982717> 19782387657
42 228 . 5. 1733386392 . 4514357 - 14483550278412 . 41698934486350571158286592612 24558102080
43 297 . 55 . 972 . 1012 - 95274169 - 41074946232 - 261707174554789561242377° 60975468160
a4 228 .38 .53 .37.78929 .59813772 . 4954794326836372 - 12293514782855096543040614611°> 75696068160
45 29 -41-712 . 732 . 6132 - 8292 - 120492 - 356712 - 158060741 - 5653356549912 - 15364259136861812366333850072 187934221049
46 216 . 5.101% . 1132 . 1732 . 107532 - 461972561 - 56239431612 - 14151339845819723292 - 10755971249576019833> 233206143305
a7 53 .532 . 6317 - 522532 - 18338681 - 15811368983048738425802036812 - 8123681876379485694671582869° 579227239385
48 28 .3%.5.72.53.1032 . 241 - 349 - 32261 - 2019429912 - 52397848113048968658402892707284357384204214690358072 719061718985
49 243 .32 .533.109% . 269-673 - 61312 - 87792 - 10337 - 971116392 - 197138465623492 - 43914538310167155813446828617° 1785296013426
50 28.32.5.13.53. 281 - 2289409 - 29815464978238573% - 308877776424379545184158050936726391550257733523395192 2216250935405
51 38.292 .612.2812 . 401 - 13721838469 - 1686297910727424751484056720632 - 4241152736546974788095066505956922479> 5502457226069
52 218 .3%.17.173.10733 - 216397 - 65777730842117217435784441241998866743523949389816333957109655549476014972 6830734251941
53 17% - 1733 . 4012 - 4992 - 339208217 - 150608489191257173772 - 29081204312728261309088875480501580735352886679278612 16959393225349
54 217.182.17%.312 .61-173 - 6772 - 347201 - 387758088285047115000677477290134221474170127527057907577291671462567326729° 21053413831138
55 270 .32 .58 . 114 . 192 . 315 . 592 . 615 . 3592 . 3672 - 653°% . 13122601 - 682671253276850974272 - 69101065065734550163184081293343> 52271256563300
56 217.310.312.41.612.5016592 - 212666609 - 32835038712439512 . 3754536958473315490792 - 59127709822601833003823907232695491750057> 64889261071298
57 32.613 .12473 - 211744837 - 76894601368372 - 1203176157307116561132 - 603569227228423170321941478290677134176973056578082293901> 161106694465961
58 220 . 611272 . 977 - 3355836277 - 2104902616309 - 874090577800454614414396273583286701969460419238366722014621226920425311268037> 199997774600369
59 496554148265225
60 616421080464625
61 1530446326625450
62 1899892268297341
63 4717046233150309
64 5855733366505309
65 14538589112770421
66 18048168441997840
67 44809909783257760
68 55626932047995920
69 138110327480493437
70 171449865342371029

Table C.2: Number of tilings of 5-pillows AP> up to n = 70

Gl
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C.2 Supplementary Data for 5-pillows

We can write #AP) = (n5)?(sn,5).- The ratio of consecutive terms of s, 5 split into two
cases when n is even or n is odd; these two cases are presented in Tables C.3 and C.4.
It appears that each table has a limiting value, and that the limiting value for Table C.4
is twice that of the limiting value of Table C.3. A more illuminating picture comes from
the ratio of s, 5/s,—25. This data is presented numerically in Table C.5 and is plotted in
Figures C.1 and C.2 for different ranges of n. The intriguing property of this plot is the
appearance of a damped sine curve. We would hope to estimate the limiting value of the
damped sine curve since if the s, 5 satisfy some linear recurrence then the limit the largest
real root of the recursion polynomial, as it was in the 3-pillow case discussed in Section A.2.

n Sn,5/Sn—1,5

2 2.500000000000000000000000000000000000000
4 1.000000000000000000000000000000000000000
6
8

1.172413793103448275862068965517241379310
1.300000000000000000000000000000000000000

241397518150139552734699456003346751052
241397992476648616810254001857091597182
.241397862636930135551178269530405672514

10 1.183606557377049180327868852459016393443
12 1.299659477866061293984108967082860385925
14 1.224019270474879559532002752924982794219
16 1.233475602722343984311916022609297496828
18 1.252370505335961030751496671996430297847
20 1.233205374280230326295585412667946257198
22 1.245909689077445838980221161589377958478
24 1.240748218121429755821562787565645659634
26 1.240072264606732781561406384224670942364
28 1.242846649717169123016499236150186248940
30 1.240501424314886633559459533309369213173
32 1.241719411493481996898185019071970490841
34 1.241461422011918710759592114907468737824
36 1.241197097101583662772067733309736744488
38 1.241566334726821323756729208552522620601
40 1.241313954088675365852667875470138539492
42 1.241412437457220333956981055433980064179
44 1.241418400616015868897266372378435544266
46 1.241371273431744012187352208743397200511
48 1.241415579399322762048593396021714963808
50 1.241391297990966446557480937905681146252
52 1.241397065220065665713512166985042849378
54 1.241401360967898126262250373284476669107
56 1.241394704041937756635816474106621431399
58 1.241399528823583420747459728055079558989
60 1.241397504417535037670975753552088856509
62 1.241397516034749802520069387924305815428
64 1.241398340629474948972441892514073484931

1.

1.

1

Table C.3: Ratios of s, 5 to s,_1,5 for n even

C.3 PARI Code to Calculate Factorizations

To factor some large number n with relatively small factors, we use an elliptic curve fac-
torization. The code that follows is taken from William A Stein’s notes on elliptic curve
factorization, available online at

http://modular.fas.harvard.edu/edu/Fall2001 /124 /lectures/lecture31/lecture31/.

Factor the small factors out of n, and define the remainder to be N. Input this value as N
in PARI, and use the following code.
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3.3
32
3.1
3

2.9

2.8
10 15 20 25 30 35 40

Figure C.1: Damped sinusoidal behavior observed in 5-pillows (10 < n < 40)

3.0826 -
3.0824 -
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3.082 -
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3.0816 -
3.0814 -
3.0812 -
3.081-

35 40 45 50 55 60 65 70

Figure C.2: Damped sinusoidal behavior observed in 5-pillows (35 < n < 70)



Table C.4: Ratios of s, 5 to s,_1 5 for n odd

{ ECM(N, m)= local(E);

Sn,5/8n-15

e
oo s © N3

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69

2.600000000000000000000000000000000000000
2.230769230769230769230769230769230769231
2.941176470588235294117647058823529411765
2.346153846153846153846153846153846153846
2.440443213296398891966759002770083102493
2.537991266375545851528384279475982532751
2.437166151251054259207197076187798706775
2.515009819508089404283175909473487328159
2.475059382422802850356294536817102137767
2.476313229571984435797665369649805447471
2.490933741112670061324547159995585893778
2.477256010536227463358351092643921827068
2.485268151424733459194059639387433520464
2.482778006361963171056002671478366755662
2.481745031770127137059521155684060465976
2.483796757326059877733031322893494060499
2.482236806565331236230669072133646872566
2.482947588291645192324070203120835180588
2.482880052008899868862522648036411221029
2.482647379647706391809516191755705494075
2.482906372869022621148743103522436372249
2.482747461225600333743939600680046734940
2.482798177369552808690396537543396317741
2.482813319482582829294294197351666294114
2.482777170295237910877826046396898847201
2.482806767153893018888019783574270013518
2.482792433690293457289650684912432442343
2.482794407058245344565739829016574586522
2.482798367418978507985970344544789634589
2.482793621321130052355883010075106218697
2.482796688981562690217513516470626698450
2.482795612916888065772730439648308152539
2.482795410917471026010251469339438368212
2.482796055718646430714753483135276074613

E = €l11init ([0,0,0,random(N), 1] *Mod(1,N));

print("E: y°2 = x°3 + ",1ift(E[4]),"x+1, P=[0,1]");

ellpow(E, [0,1]*Mod(1,N) ,m); }

{ lemfirst(B) =

local(L,i); L=1; for(i=2,B,L=lcm(L,i));

return(L); }

m=lcmfirst(10°5)
ECM(N,m)

The hope is that you get an error message of the form:

*x*%  impossible inverse modulo: Mod(x,y)

75

If this is the case, the value z divides N and therefore n, so we are one step closer to
knowing the factorization of n. Once we have calculated all the squarefree factors, we can

infer s,, by appealing to the sinusoidal behavior of the ratios of successive terms.
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Sn,5/8n—25

Sn,5/8n—25

S500No o WS

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

6.500000000000000000000000000000000000000
2.600000000000000000000000000000000000000
2.230769230769230769230769230769230769231
2.615384615384615384615384615384615384615
3.448275862068965517241379310344827586207
3.823529411764705882352941176470588235294
3.050000000000000000000000000000000000000
2.776923076923076923076923076923076923077
2.888524590163934426229508196721311475410
3.171745152354570637119113573407202216066
3.298524404086265607264472190692395005675
3.106550218340611353711790393013100436681
2.983138334480385409497591190640055058500
3.006184987348889513635085746415518695530
3.102203252970354135425077863652093667090
3.149724118582250070139343495744879827925
3.099691369501357230506079648979288290633
3.052256532066508313539192399049881235154
3.053802783109404990403071017274472168906
3.085262645914396887159533073929961089494
3.103478482902205723489089230648360929429
3.090621600744092191761386029353806378383
3.073650980903426042071447286646068475274
3.071976470996299874418125412527786647515
3.081912104692257704779232202966851679654
3.088807195647012136095627585084673716860
3.085712327198438333675628200161923065565
3.079889653149689981429311884670575904207
3.078608246697236292590388447821765838675
3.081630980326475050094736842840168588923
3.084178647776333990023892358636878065138
3.083537854338602868603777317512848466853
3.081601235648920114966210130961153992911
3.080945118627594377931474608702159286774
3.081827338842968112556379978397962257549
3.082744136514058497203232613944272291661
3.082660285739029311687008261263265594063
3.082033654887063436387999708762080013037

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

3.081744835438383212921571361267555118556
3.081989334915240257336676584193452192134
3.082310852321399334915479965108844697229
3.082325658286375198583749840003922648407
3.082128382448158639935237850250890144211
3.082011377551052976646442503943126865838
3.082074335115254808113699071349165011857
3.082184337890805922767888166740048116202
3.082203135545826415830656109570837012752
3.082142849341743560040812231586218238763
3.082097974055144133149704513051094724783
3.082112292799887536839796323686551536145
3.082149034253361721023311784168586554114
3.082159699765150140741581855101534599922
3.082141906183930261145401818399092799228
3.082125378418524218946572591968036206617
3.082127828147048817896539560458988503996
3.082139807087933950029797461104935385505
3.082144723477882070521058501380067172370
3.082139697285850151913147944066893874371
3.082133805491825357661558834695734045238
3.082133834334972073346540323412307220633
3.082137642521013188073890218557841382804
3.082139689822066533347572376618514393556
3.082138353997165044565939093121527660221
3.082136311949079407989103893469256349452
3.082136061187504427052953063180663114686
3.082137238843184407843964717709217785224
3.082138039298069101827509245273700559571
3.082137716932528180938034332541521060663

Table C.5: Ratios of s, 5 to s,_25
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Appendix D
7-PILLOW AND 9-PILLOW DATA

D.1 Table of Values

In search of a more general form of Propp’s Conjecture, we present the number of tilings of
7-pillows (AP]) and 9-pillows (AP?). As stated in Conjecture 11, the number of tilings of
AP} for q odd is thought to be of the form (En,q)2sn,q for some values £, 4 and s, 4. As the
first previously unknown case of nicely behaving generalized Aztec pillows, we present as
much data as collected about AP?, also called 5-pillows. Table D.1 contains the number of
tilings of AP and s, 7 for n up to 40 and Table D.2 contains the number of tilings of AP?
and sy, ¢ for the same range. The non-square part was calculated using a product of the bold
faced terms. The same bolding convention is used as in Appendix A. The factorization of
and the non-square part of AP and AP? was calculated using PARI, as outlined in Section
C.3.
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#APZ Non-Square Part

n

1 2 2
2 5 5
3 13 13
4 2-17 34
5 23 .17 34
6 2-32.37 74
7 72.73 73
8 112 - 193 193
9 212. 72 256
10 32.13-17% - 61 793
11 22 .72 .112 . 1049 1049
12 51729 - 3892 2465
13 2% . 3892 . 2857 2857
14 3% .1792 . 6577 6577
15 2.32.72.13% . 192 . 257 8226
16 26 .36.593. 22372 21348
17 215.32. 401 - 68832 28872
18 26.32.53.172.37-101 - 18792 TAT40
19 2.5-17-131% - 541 - 1022032 91970
20 132 .317- 701 - 7332 - 77412 222217
21 26 .397. 677 - 790943332 268769
22 3%.5-133853 - 4639622112 669265
23 24 .5.112.592 . 373 - 457 - 164122812 852305
24 53 . 444912 . 240389 - 15141012 2201945
25 234 .38 .5.7%.112.137 - 467692 2805760
26 52 .72 .1912 . 142873 - 420123797212 7000777
27 22 .74 . 8636081 - 6437320730171> 8636081
28 211 . 314 .72 .17.7972 . 626797 - 19405319> 21311098
29 215 .5.112.132.132172 - 15733 - 464512 - 1634112 26588770
30 215 .5.7%.41.143791% . 163637 - 2267651423> 67091170
31 22 . 85150213 - 230446162371608143932 85150213
32 3%.7%.612 . 1912 .3169 - 67901 - 3113412 . 5078909512 215178269
33 217 .38 .112 . 372 . 157 - 858301 - 438177592 - 607375272 269506514
34 32.17.192.202.5212.6532 . 23412 . 74597 - 4386857 - 148529957 671189121
35 26 .53 . 330372 - 15762997 - 56500880532 - 110041149372 835438841
36 53 .593 . 28181 - 432589366641435670980239359°> 2088916625
37 210 . 17 . 154411273 - 1950458992 - 2841516944954857861> 2624991641
38 317 - 38472 . 1151632 - 20868733 - 12794274727568367074412 6615388361
39 210.32.5.61.1272 - 47381 - 55714817655010479458305290133> 8323894080
40 233 . 53 . 10069492 - 130445921 - 133985520916433570338032 20871347360

Table D.1: Number of tilings of 7-pillows AP up to n = 40

D.2 Supplementary Data for 7-pillows

As in Appendices A and C, patterns emerge in s, 7 when we write #AP! = (n7)*(8n,7)-
Tables D.3 and D.4 give the ratio of consecutive terms of s, 7 split into the two cases when
n is even or n is odd. It appears that each table has a limiting value, and that the limiting
value for Table D.3 is twice that of the limiting value of Table D.4. Considering the ratio
Sn,7/Sn—2,7 yields the data presented numerically in Table D.5. Again, a damped sine curve
form appears when the data is plotted in Figure D.1. This damped sine curve converges
more slowly to a limit, making it unlikely that we might estimate its limiting value precisely
without many more calculations.

D.3 Supplementary Data for 9-pillows

As with the 7-pillows in Section D.2, we notice patterns in s, 9 when we write #APS =
(en,9)2(8n79). Tables D.6 and D.7 give the ratio of consecutive terms of sy, g split into the two
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#APE Non-Square Part

n

1 2 2
2 5 5
3 13 13
4 2.17 34
5 89 89
6 22 .89 89
7 32 .193 193
8 5.72.37 185
9 2.5-112 .41 410
10 2% .13% . 241 482
11 26.112 . 192 1444
12 23.592 . 1009 2018
13 2.132 .172 . 3181 6362
14 6772 - 8461 8461
15 5-41-97 17212 18655
16 2% . 17212 . 22861 22861
17 32 .55 .17 .832 . 409 51125
18 210 .54 .37 .101 - 4792 59792
19 3% .432 .8392 . 146749 146749
20 22 . 172 . 61 - 1072 - 4492 - 3209 195749
21 211 .72 .61-4337 279172 520114
22 22 .5.132 .71 . 194572 . 146093 730465
23 53 . 76 . 942012 . 381509 1907545
24 24.3%.112.732 .149 - 15773 - 398292 2350177
25 172 . 5638489 - 3757443312 5638489
26 26 .32.461-1613 - 67906280032 6692337
27 3% .5.832 . 3233509 - 4666436872 16167545
28 2 .53 .202.612 . 2389 - 35832 - 30894472 20091490
29 26.510.112.13.29.892 . 4572 . 1373 - 220512 51762100
30 215 .53 .172 . 312 . 5861 - 27572404169> 67753160
31 228 . 5.121092 . 2226893 - 46528903 178151440
32 215 .53 .30012 - 540373 - 1565470186192 229118152
33 26.32.7%.892.143032 - 143289121 - 406603069> 573156484
34 2-310 .72 .21132 . 352173793 - 1324886982313 704347586
35 312.5%.13- 28194201 - 89513892 - 17502461532 1720581265
36 28 .3%.5.172 . 41.61- 169313 - 382827892 - 111175176292 2117259065
37 53 .17 - 62238541 - 12893431992 - 22381692187312 5200275985
38 26 .5.832 . 15792 . 1080842692 - 1345114501 - 2676950597 6725572505
39 3%.72.17-19%.73-109-1272 . 127717 - 319327108465072741212 17276150873
40 2% .32.132.29.41-101 - 185057 - 7604008179971773319847312 22223310073

Table D.2: Number of tilings of 9-pillows AP? up to n = 40

cases when n is even or n is odd. It appears that each table has a limiting value, and that
the limiting value for Table D.7 is twice that of the limiting value of Table D.6. Considering
the ratio s,9/s,—29 yields the data presented numerically in Table D.8. Once more, a
damped sine curve form appears when the data is plotted in Figure D.2. This damped sine
curve converges even more slowly to a limit, making it unlikely that we might estimate its
limiting value precisely without many more calculations.



n Sn,7/8n—1,7

2 2.500000000000000000000000000000000000000
4 2.615384615384615384615384615384615384615
6  2.176470588235294117647058823529411764706
8  2.643835616438356164383561643835616438356
10 2.886718750000000000000000000000000000000
12 2.349857006673021925643469971401334604385
14 2.302065103255162758137906895344767238362
16 2.595185995623632385120350109409190371991
18 2.588667220836796896647270712108617345525
20 2.416190061976731542894422094161139502012
22 2.490112326942467323240403469150087993779
24 2.583517637465461307865142173283038348948
26 2.495144631044708029197080291970802919708
28 2.467681579179259666508454471420543647055
30  2.523289719682407271942252311784260798826
32 2.527043226538963560784046423935545528230
34 2.490437470464999595519980641358449688530
36 2.500382460671349131108928175868710897055
38  2.520155972184293900385795552329532160975
40  2.507401843344935979771621505303921406938

Table D.3: Ratios of s, 7 to s,,—1,7 for n even

37
39

.256628249104963679438378733761094940781
.258262346179436947496240878669103429830

n $n,7/8n—1,7

3~ 2.600000000000000000000000000000000000000
5 1.000000000000000000000000000000000000000
7 0.986486486486486486486486486486486486486
9 1.326424870466321243523316062176165803109
11 1.419485791610284167794316644113667117727
13 1.159026369168356997971602434077079107505
15 1.250722213775277482134711874714915615022
17 1.352445193929173693086003372681281618887
19 1.230532512710730532512710730532512710731
21 1.209488922989690257721056444826453421655
23 1.273494056913180877529827497329159600457
25  1.274218929173980276528251159770112332506
27 1.233588928771763477111183515772606383549
20  1.247648994903969753224352870039826197599
31 1.269171680863517509085025644954470163510
33 1.252480165643492559185890653298265913646
35  1.244714514674024342536982210711368189771

1
1

Table D.4: Ratios of s, 7 to s,_1,7 for n odd



Sn,7/8n—2,7
6.500000000000000000000000000000000000000
6.800000000000000000000000000000000000000
2.615384615384615384615384615384615384615
2.176470588235294117647058823529411764706
2.147058823529411764705882352941176470588
2.608108108108108108108108108108108108108
3.506849315068493150684931506849315068493
10 3.829015544041450777202072538860103626943
11 4.097656250000000000000000000000000000000
12 3.335588633288227334235453315290933694181
13 2.723546234509056244041944709246901811249
14 2.668154158215010141987829614604462474645
15 2.879243962198109905495274763738186909345
16 3.245856773604987076174547666109168313821
17 3.509846827133479212253829321663019693654
18 3.501030541502716882143526325651114858535
19 3.185439179828207259628706012745912995290
20  2.973200428150923200428150923200428150923
21 2.922355115798629988039578123301076437969
22 3.011763276436996269412331189782959899558
23 3.171143249407483749986047498037348057254
24 3.290094357242646784158741305760797292552
25 3.291967077513331495180715823560814497158
26 3.179360519903993968968343895964703932205
27  3.077982792541058394160583941605839416058
28 3.044104675809556567792403614627347792966
29 3.078800442006044176751005461852430517963
30 3.148179882613275017551887753507585578181
31 3.202487854834954757215170163945154288822
32 3.207251699441223040230182302678579014198
33 3.165071518963786972558718085649415815319
34  3.119223535532763301483757172523773764534
35 3.099883667375846804207485686227235309051
36  3.112262341033981091597579693190527740988
37  3.142051233646198166168335953630865481870
38  3.166899186797366792942250627164212453908
39 3.171017366298729482316092449606394765659
40 3.154969326221844166043511893526457773444
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Table D.5: Ratios of s, 7 to sp,—27
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Figure D.1: Damped sinusoidal behavior observed in 7-pillows



n 81,0/8n—1,9

2 2.500000000000000000000000000000000000000
4 2.615384615384615384615384615384615384615
6  1.000000000000000000000000000000000000000
8  0.958549222797927461139896373056994818653

10 1.175609756097560975609756097560975609756
12 1.397506925207756232686980609418282548476
14 1.329927695693178245834643193964162213141
16 1.225462342535513267220584293755025462343
18 1.169525672371638141809290953545232273839
20 1.333903467826015850193187006385052027612
22 1.380543701357363441526778728213579682261
24 1.232042756527368948045786600053996104941
26 1.186902554922072207642863185509451202264
28 1.242705061281722116746853031799200187784
30 1.308933756551608223004862631152909174860
32 1.286086444207243006287235174747956008663
34 1.228892293225806026125319032419774561950
36 1.230548715175042894588300657801246022518
38 1.271308439119173855350383955441220709774
40 1.286357721483647059372378519977746897279

Table D.6: Ratios of s, 9 to s,,—1,9 for n even

$n,9/8n-1,9
2.600000000000000000000000000000000000000
2.617647058823529411764705882352941176471
2.168539325842696629213483146067415730337
2.216216216216216216216216216216216216216
11 2.995850622406639004149377593360995850622
13 3.152626362735381565906838453914767096135
15 2.204822125044321002245597447110270653587
17 2.236341367394252219937885481824942041031
19  2.454324993310141824993310141824993310142
21 2.703022748519788095980056092240573387348
23 2.611411908852580205759345074712683016982
25  2.399176317358224508196616680360670706930
27 2.415829477804240880278443838079283813711
20  2.576319625871451047184653801186472481633
31 2.629418908284130216214269563220372304406
33 2.501576060197971568834930197935604857707
35 2.442801394083290007896754543572752444984
37 2.498643681565722803978170711008385740457
39 2.568725689918051073036495351855551812239
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Table D.7: Ratios of s, 9 to s,_1,9 for n odd



Sn,9/8n—2,9
6.500000000000000000000000000000000000000
6.800000000000000000000000000000000000000
6.846153846153846153846153846153846153846
2.617647058823529411764705882352941176471
2.168539325842696629213483146067415730337
2.078651685393258426966292134831460674157
2.124352331606217616580310880829015544041
10 2.605405405405405405405405405405405405405
11 3.521951219512195121951219512195121951220
12 4.186721991701244813278008298755186721992
13 4.405817174515235457063711911357340720222
14 4.192765113974231912784935579781962338949
15  3.125589437283872995913234831813895001572
16 2.701926486230941969034393097742583618958
17 2.571033442293185818456122705556952476741
18 2.615458641354271466689996063164341017453
19 2.870396088019559902200488997555012224939
20  3.273832619748461332619748461332619748461
21  3.605571417863154093043223463192253439546
22 3.731641030094662041696253876137298274832
23 3.605168262416038887649920433025775163764
24 3.217371126611131265700615361447844865942
25 2.955887803433208653006875329284499186127
26 2.847588500781005005154930883929167888206
27  2.867354179461909032721354958748700228022
28 3.002163519260909903371572591159112280209
29 3.201605438549884970167084736736468029005
30 3.372231725969552283081045756188316545961
31  3.441735169168175170636430902146551241159
32  3.381660014086427850745264132329768825543
33 3.217243060173973334147621821075372727832
34  3.074167541295462264377900534044111878137
35 3.001939807070210166199567935098157242517
36  3.005986116916996149114366383304393123880
37  3.074702772030939207047567148768180967029
38  3.176546798726305134511255475484290818233
39 3.265642647375040491389410943935848367654
40 3.304300125599493481335980333766396590204

©o DU WS

Table D.8: Ratios of s, 9 to s,_29
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Figure D.2: Damped sinusoidal behavior observed in 9-pillows



