
ENSURING EVERY CANDIDATE WINS UNDER POSITIONAL VOTING
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Abstract. Given a fixed set of voter preferences, different candidates may win outright
given different scoring rules. We investigate how many voters are able to allow all n can-
didates to win for some scoring rule. We will say that these voters impose a disordering
on these candidates. The minimum number of voters it takes to impose a disordering on
3 candidates is 9. For 4 candidates, 6 voters are necessary, for 5 candidates, 4 voters are
necessary, and it takes only 3 voters to disorder 9 candidates. In general, we prove that m

voters can disorder n candidates when m and n are both greater than or equal to 3, except
when m = 3 and n ≤ 8, when n = 3 and m ≤ 8, and when n = 4 and m equals 4 or 5.

1. Background Information

Saari, in his paper “Millions of election outcomes from a single profile” [3], proved for n
candidates that it is possible to create a profile leading to (n − 1)(n − 1)! different strict
positional election rankings. (Recall that tallying votes using a positional rule assigns specific
weights to candidates based on how they are positioned on the ballot. For example, the
plurality vote is when the top-ranked candidate is given a weight of one and every other
candidate is given a weight of zero. The Borda count is when the top-ranked candidate is
given a weight of n, the second-ranked candidate is given a weight of n−1, through the last-
ranked candidate, who receives a weight of 1.) In other words, even if the voter’s preferences
remain the same, it is possible that different scoring rules can produce a large number of
different election outcomes. Saari’s result shows that even with as few as 10 candidates, the
number of possible election outcomes for one profile can be over one million! This highlights
that the choice of the positional rule used in the election is very important.

Yet how do we know that this result is relevant to everyday elections? If the number of
voters necessary to produce a profile with different outcomes is large, then we can dismiss
Saari’s result as irrelevant to most organizations. While in this article I do not explain
how many voters are necessary to create a profile with (n − 1)(n − 1)! election outcomes, I
characterize how many voters are required to create a profile under which every candidate
will win outright under some positional rule. I show that the required number of voters is
smaller than one might expect. For example, if there are nine or more voters, then they can
vote in such a way that any of three candidates might win under a different positional rule. A
particularly surprising conclusion is that as the number of candidates increases, the number of
voters required to construct such a profile decreases! A complete explanation for this counter-
intuitive result is given in the paper, but the basic intuition behind this assertion is that
as the number of candidates increases, the number of degrees of freedom in the normalized
positional rule increases. With three candidates, there is but one degree of freedom; whereas
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Number of candidates Number of voters
n = 3 m ≥ 9
n = 4 m ≥ 6

5 ≤ n ≤ 8 m ≥ 4
n ≥ 9 m ≥ 3

Table 1. For each given combination of number of candidates and corre-
sponding number of voters, a profile exists where all candidates win under
some scoring rule.

with n candidates, there are n − 2 degrees of freedom. Table 1 provides a summary of the
results. Additional references which discuss finding minimal numbers of voters for paradoxes
include Weber’s “How many voters are needed for paradoxes?” [5] and Saari’s “Mathematical
structure of voting paradoxes: II. Positional voting” [4]. The geometrical theory behind
positional rules can be found in Saari’s “Basic Geometry of Voting” [2].

I now formalize the necessary background knowledge and then prove the aforementioned
results. Consider m voters expressing their preferences for n candidates. Assume that each
voter ranks all n candidates with no ties. We will call this set of preferences a profile.
A scoring rule is be a vector with monotonically nonincreasing entries of the form x =
(x1, x2, x3, . . . , xn−1, xn). This scoring rule is normalized when x1 = 1 and xn = 0. For
example, the scoring rule given above for the Borda count is

x = (n, n − 1, . . . , 2, 1) ;

after a linear transformation, its normalized scoring rule is

x =

(
1,

n − 2

n − 1
, . . . ,

1

n − 1
, 0

)
.

A linear scaling of a scoring rule does not change the outcome of the election; however, it
provides the framework for the topic of this article. One may decide to vary the point values
given to the n−2 middle candidates in order to change the weight that a first-place, second-
place, third-place, etc. finish should carry. A different candidate may win under different
scoring rules. (There will be many examples of this throughout this article.) Given a scoring
rule x, we will represent the score of a candidate c by the notation x(c).

The author wishes to determine the minimal number of voters who can collude to rank
the candidates in such a way that each candidate will win outright with some scoring rule.
We will call such a set of voter preferences a disordering profile, and say that (m, n) is a
disordering pair if a set of m voter preferences disordering n candidates exists. We will say
that a pair of candidates c1 and c2 are disordered by a set of voter preferences if two scoring
rules x1 and x2 exist where x1(c1) > x1(c2) and x2(c1) < x2(c2). For a voter vi, define vi’s
preference ranking ri to be a one-to-one function from the set of candidates to the integers
[n] = {1, . . . , n}, where if ri(c1) > ri(c2) for candidates c1 and c2, then vi prefers c1 to c2.
With this notation, if x = (x1, x2, . . . , xn) is a scoring rule, then x(c) =

∑m

i=1 xn+1−ri(c).
Section 2 explores the minimal number of voters necessary to disorder n candidates. Sec-

tion 3 explores which pairs (m, n) are disordering pairs.
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2. Finding minimal disordering pairs

In order to find the minimal number of voters necessary to disorder n candidates, we
first establish and prove a necessary and sufficient condition under which two candidates
are disordered. Building upon this, we establish a necessary condition for a profile to be a
disordering profile.

We define Rj(c) as the number of voters for which candidate c is ranked at least j, that
is, the number of voters vi such that ri(c) ≥ j. The following lemma gives a necessary and
sufficient condition under which two candidates are disordered.

Lemma 1. In a given profile, two candidates c1 and c2 are disordered if and only if there

exist integers j and k such that Rj(c1) > Rj(c2) and Rk(c1) < Rk(c2).

Proof. We first prove that this condition is necessary. Order the rankings ri(c1) in decreasing
order and do the same for the rankings ri(c2). Suppose that Rk(c1) ≥ Rk(c2) for all k
from 1 to n. Then the j-th highest ranking of candidate c1 is at least as high as the j-th
highest ranking of candidate c2. Since in all scoring rules x = (x1, x2, . . . , xn), the xi are
monotonically nonincreasing, the contribution to the total score of the each candidate’s j-th
highest ranking is always at least as large for c1 as for c2. Therefore, x(c1) ≥ x(c2) for all
scoring rules x. This implies that candidate c2 will never be preferred to candidate c1.

In addition, this condition is sufficient to disorder two candidates. For example, if j
and k are integers such that Rj(c1) > Rj(c2) and Rk(c1) < Rk(c2), the scoring rules
(1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

j−1

) and (1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k−1

) disorder candidates c1 and c2. �

A direct corollary of Lemma 1 is the following.

Lemma 2. For every pair of candidates ci and cj in a disordering profile, there exist integers

j and k such that Rj(ci) > Rj(cj) and Rk(ci) < Rk(cj).

We will repeatedly use Lemma 2 in order to prove that a particular profile is not a disor-
dering profile.

That every pair of candidates is disordered in a profile does not guarantee that the profile
is a disordering. Figure 1 gives two examples of profiles in which every pair of candidates is
disordered yet are not disordering profiles. In this and subsequent examples, each column
will represent one voter’s preferences for the candidates, ordered from highest preference at
the top to lowest preference at the bottom. Figure 1(a) is an example of four candidates and
four voters, where candidate c2 can only tie for the lead (with the scoring rule (1, 2/3, 1/3, 0)).
In order to verify that candidate c2 cannot win outright, we must verify that this is true
that under every scoring rule. Figure 2(a) breaks down the region 1 ≥ x2 ≥ x3 ≥ 0 into the
subregions in which candidates c1, c3, and c4 win. Figure 1(b) contains a larger example in
which candidate c3 can win for no scoring rule. This is shown by the graph in Figure 2(b)
by plotting the scores of candidates c1, c2, and c3 as x2 varies.

For the following theorem and throughout this article, the computer software Maple was
used to aid example generation and verification. For example, with a small enough number
of voters and candidates, a computer can generate all profiles of that size and then verify
whether Lemma 2 holds. Appendix C contains a sample of the types of calculations done
with Maple. The complete Maple worksheet and calculations are available directly from the
author and as a download from the author’s website1.

1http://qcpages.qc.edu/˜chanusa/papers.html
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(a)

c1 c1 c2 c3

c2 c4 c4 c4

c3 c3 c3 c2

c4 c2 c1 c1

(b)
c1 c1 c1 c1 c1 c2 c2 c3 c3 c3

c2 c2 c2 c2 c3 c3 c3 c2 c2 c2

c3 c3 c3 c3 c2 c1 c1 c1 c1 c1

Figure 1. (a) A profile with four candidates and four voters where each pair
of candidates is disordered. (b) A profile with three candidates and ten voters
where each pair of candidates is disordered.
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Figure 2. (a) The decomposition of the region 1 ≥ x2 ≥ x3 ≥ 0 into subre-
gions for which candidates c1, c3, and c4 win in the profile in Figure 1(a). (b)
A graph of the scores that candidates c1, c2, and c3 receive under the profile
in Figure 1(b) for values of x2 between 0 and 1.

Theorem 3. The minimal number of voters necessary to disorder three candidates is nine.

Similarly, six voters are necessary to disorder four candidates, four voters to disorder five

candidates, and three voters to disorder nine candidates.

The proof of Theorem 3 is a verification that every profile with fewer candidates is not a
disordering profile. Examples of the cited minimal configurations are presented in Figure 3,
along with the scoring rules which verify that each is disordering. In the vast majority of
the cases, the profile in question includes two candidates who are not disordered. The few
profiles which do not have two disordered candidates are treated similarly to the profile in
Figure 1(a) above.

The remainder of this section verifies that (m, n) cannot be a disordering pair if n = 2
(Lemma 4), if m = 2 (Lemma 5), or if m = 3 and n ≤ 8 (Lemma 6). The two remaining
cases are less instructive and are included as Appendix A for completeness. Lemma 15 proves
that (m, n) is not a disordering pair if n = 3 and m ≤ 8, while Lemma 16 addresses the case
when n = 4 and m is either 4 or 5.

It seems counter-intuitive at first that the number of voters needed to disorder candidates
decreases with the number of candidates. The reason for this is that with more candidates
come more degrees of freedom in the scoring rule, so fewer voters should be necessary. Two
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(a)

x1 x2 x3

c1 c1 c1 c1 c1 c2 c2 c2 c2 1.0 1.0 1.0
c2 c2 c3 c3 c3 c3 c3 c3 c3 0.0 0.6 1.0
c3 c3 c2 c2 c2 c1 c1 c1 c1 0.0 0.0 0.0

(b)

x1 x2 x3 x4

c3 c1 c1 c2 c2 c1 1.0 1.0 1.0 1.0
c2 c2 c3 c3 c3 c4 0.0 0.8 1.0 1.0
c4 c4 c4 c4 c4 c3 0.0 0.0 0.1 1.0
c1 c3 c2 c1 c1 c2 0.0 0.0 0.0 0.0

(c)

x1 x2 x3 x4 x5

c1 c1 c5 c4 1.0 1.0 1.0 1.0 1.0
c2 c3 c2 c2 0.0 1.0 1.0 0.9 0.9
c3 c5 c3 c5 0.0 0.0 1.0 0.9 0.9
c4 c4 c4 c3 0.0 0.0 0.1 0.9 0.0
c5 c2 c1 c1 0.0 0.0 0.0 0.0 0.0

(d)

x1 x2 x3 x4 x5 x6 x7 x8 x9

c1 c9 c8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.9 0.9 1.0 0.9 0.9 0.9 1.0 0.3 0.3
c5 c3 c3 0.9 0.8 1.0 0.9 0.9 0.9 0.3 0.3 0.3
c4 c4 c2 0.9 0.8 0.0 0.9 0.9 0.9 0.3 0.3 0.3
c7 c1 c5 0.9 0.0 0.0 0.7 0.7 0.7 0.3 0.3 0.3
c6 c8 c6 0.0 0.0 0.0 0.7 0.5 0.7 0.25 0.3 0.3
c9 c5 c9 0.0 0.0 0.0 0.7 0.5 0.0 0.25 0.25 0.3
c8 c7 c4 0.0 0.0 0.0 0.7 0.0 0.0 0.25 0.25 0.25
c3 c2 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 3. Disordering profiles with (a) 9 voters and 3 candidates (b) 6 voters
and 4 candidates (c) 4 voters and 5 candidates (d) 3 voters and 9 candidates.

voters, however, cannot impose a total disorder on any number of candidates, nor can two
candidates be disordered by any number of voters.

Lemma 4. Two candidates cannot be disordered by any number of voters.

Proof. The normalized scoring rule with two candidates is always (1, 0), so no matter how
many voters there are, the candidates will always be tied or one candidate will place higher
than the other. �

Lemma 5. Two voters cannot impose a disorder on any number of candidates.

Proof. Let v1 and v2 be our two voters with preference rankings r1 and r2. Let c1 be the
first preference of voter v1 and c2 be the first preference of voter v2. If c1 = c2, then no other
candidate can ever be preferred to this candidate. If c1 6= c2, then consider the values r1(c2)
and r2(c1). If these values are equal, c1 and c2 will always be weighted equally and never
be preferred one to the other. On the other hand, if one value is larger than the other, for
example r2(c1) > r1(c2), then c2 will never be preferred to c1. �
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c4 c5 c1

c2 c6 c7

c3 c3 c8

x x c2

y c1 y
z z z
z z z
c1 c2 c3

Figure 4. Visual aid for the proof of the impossibility of a (3, 8) disordering profile.

Lemma 6. There does not exist a (3, n) disordering pair for n ≤ 8.

Proof. Assume we can construct a set of three voters’ preferences that create a disordering
profile with fewer than 9 candidates. Let c1, c2, and c3 be the three candidates that are ranked
last by the three voters. They must be distinct; otherwise, the candidate that is ranked last at
least twice will have at most one non-last ranking, and can never win. Therefore, candidates
c1, c2, and c3 each have two non-last rankings, and each must be able to win outright over
the others, using only these two non-last rankings. Lemma 2 implies how these six non-last
rankings must be ordered in order for there to possibly be a disordering. Up to candidate
relabeling, it must be the case that candidate c1’s highest ranking is strictly higher than
c2’s, which in turn are both strictly higher than c3’s two highest rankings, which are strictly
higher than c2’s second highest ranking, all of which must be higher than c1’s second highest
ranking.

With three voters, there are at least 5 (possibly non-distinct) candidates ranked higher
than or equal to the highest position of c3. (See Figure 3(d) for a visual aid.) If n ≤ 7,
there must be a repetition in those five candidates, and c3 could never win over this repeated
candidate. Even when n = 8, it is impossible to arrange the rankings in a satisfactory
manner. Figure 4 shows the only viable placement of the rankings of candidates c1, c2, and
c3, with the five distinct candidates ranked higher than c3.

Notice that none of candidates c4 through c7 can be ranked in the positions marked x, or
else c2 could not win outright. So c8 must be ranked in those positions. Neither c4 nor c5

may be ranked in a position marked y, or else c1 could not win outright. If they are both
c6, then c7 cannot win outright. If the positions marked y are c6 and c7, only one ranking
remains for each, so one could never win outright, as in the proof of Lemma 5. So (3, 8) is
not a disordering pair. �

3. Finding all disordering pairs

It would be nice to be able to say that if (m, n) is a disordering pair, then both (m+1, n)
and (m, n+1) are disordering pairs. But we are not even assured that by adding an additional
voter to a disordering profile that the resulting augmented profile is also a disordering profile.
The problem of finding the disordering pairs (m, n) is solved by means of the following
theorem.

Theorem 7. A collection of m voters can disorder n candidates whenever m ≥ 3 and n ≥ 3,
except in the cases presented in Section 2. Those are when m = 3 and n ≤ 8, when n = 3
and m ≤ 8, and when n = 4 and m ≤ 5.
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The remainder of this section will give rules to help prove this theorem. We start with
a definition about when it is possible to add a candidate in a simple manner to a set of
disordering voter preferences.

Definition. Let (m, n) be a disordering pair. We will say that (m, n) is a splittable disor-
dering pair if some m-voter, n-candidate disordering profile supplemented by an (n + 1)-st
candidate ranked the same by all voters induces a disordering on the n + 1 candidates. We
will also refer to such a disordering profile as a splittable disordering profile.

For example, the disordering profile in Figure 3(a) is splittable since adding a row of c4’s
between the second and third preferences yields a disordering of {c1, c2, c3, c4}. (We justify
this assertion in the proof of Lemma 13.) When (m, n) is a splittable disordering, not only
does this trivially imply that (m, n + 1) is disordering, but it also gives us the framework to
create infinitely many disorderings through an introduction of more candidates.

Theorem 8. If (m, n) is a splittable disordering pair, and (m, n′) is a disordering pair, then

(m, n + n′) is a disordering pair.

We will think of the (n + 1)-st candidate that we insert into the disordering profile with
m voters and n candidates as the placeholder for the n′ candidates we wish to insert. In our
proof, we must first show there is enough “space” in which to insert all n′ candidates.

Proof. Let (m, n) be a splittable disordering pair. Then there exists a disordering profile
of m voter preferences for candidates c1 through cn with a way to insert an (n + 1)-st
candidate cn+1 between each voter’s (k − 1)-st and k-th preferences (for some k) that makes
this augmented set of voter preferences a disordering profile. This implies that there exist
(normalized) scoring rules xi for i from 1 to n + 1 such that candidate ci wins outright, i.e.
xi(ci) > xi(cj) for all j 6= i.

Consider what “winning outright” means with respect to the geometry of the situation.
The vectors xi = (1, x2, x3, . . . , xn, 0) are elements of the subset S of R

n+1 where 1 ≥ x2 ≥
x3 ≥ · · · ≥ xn ≥ 0. Assign to every vector x ∈ S the candidates that win there. Since
x(c) is an affine function on variables x2 through xn, the region associated to each candidate
c is an intersection of halfspaces, the boundary of which arises from equations of the form
x(c) = x(c′). For a candidate c to be able to win outright, the intersection of these halfspaces
must have a non-empty interior, otherwise other candidates would tie with c at every point
where c was to win.

Under this framework, the scoring rule xn+1 for which cn+1 wins outright will be located in
the interior of the region associated to cn+1, an open set. Let xn+1 = (x1, . . . , xk−1, xk, xk+1, . . . , xn+1).
Since xn+1 is in the interior of the region on which cn+1 wins, there is some closed interval
[z0, z1] of positive width on which cn+1 wins outright for all vectors x = (x1, . . . , xk−1, z, xk+1, . . . , xn+1),
whenever z ∈ [z0, z1]. (That is, there is “space” around the k-th component of xn+1, in which
a small perturbation does not change that cn+1 wins outright.)

Now since (m, n′) is a disordering pair, this implies that there is a set of m voter preferences
that disorder n′ candidates, say c′1 through c′n′. Therefore there exist scoring rules x′

i for
1 ≤ i ≤ n′ such that candidates c′i win outright. Consider the set of voter preferences
on candidates c1 through cn and c′1 through c′n′ , where we insert candidates c′1 through c′n′

exactly where we placed the (n + 1)-st candidate above (level k). We wish to show that this
is a disordering of the n + n′ candidates.
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For one, note that all candidates ci for 1 ≤ i ≤ n can win outright. Since there exist
scoring rules xi = (1, x2, . . . , xn, 0) such that ci wins outright over candidates c1 through
cn+1, the scoring rule x̂i = (1, x2, . . . , xk−1, xk, xk, . . . , xk, xk+1, . . . , xn, 0) is such that ci wins
outright over the candidates c1 through cn and c′1 through c′n′ . This is because x̂i(c

′

j) =
x(ck) < xi(ci) = x̂i(ci).

Also note that all candidates c′i can win for 1 ≤ i ≤ n′. Linearly rescale the vectors
x′

i = (1, x′

2, . . . , x
′

n′
−1, 0) to y′

i = (z1, y
′

2, y
′

3, . . . , y
′

n′
−1, z0), where z0 and z1 are from above.

As mentioned in the introduction, a linear scaling of a scoring rule does not change the
outcome of the election. Since candidate cn+1 wins outright over c1 through cn for all
vectors x = (x1, . . . , xk−1, z, xk+1, . . . , xn+1) whenever z ∈ [z0, z1], then candidate c′i will
win outright over all candidates c1 through cn and c′1 through c′n′ for the scoring rule x̂′

i =
(x1, . . . , xk−1, z1, y

′

2, . . . , y
′

n′
−1, z0, xk+1, . . . , xn+1). Therefore (m, n + n′) is a disordering pair.

�

Corollary 9. If (m, n) is a splittable disordering pair, and there is some sequence of n
consecutive disordering pairs (m, N), (m, N + 1), . . . , (m, N + n − 1), then for all n′ > N ,

(m, n′) is a disordering pair.

We can also generate disorderings by increasing the number of voters.

Lemma 10. If (m, n) is a disordering pair, then (km, n) is a disordering pair for all integers

k ≥ 2.

Proof. The introduction of clones of every voter will not change the disordering of the n
candidates. �

Lemma 11. If (m, n) is a disordering pair, then (m + n, n) is also a disordering pair.

Proof. Given a disordering profile of m voters and n candidates, we can add n voters with
the cyclic preferences on the candidates. For example, if n = 3, then let voter vm+1 prefer
c1 to c2 to c3, let voter vm+2 prefer c2 to c3 to c1 and let voter vm+3 prefer c3 to c1 to c2.
The introduction of these new voters changes each candidate’s score by the same constant
amount. �

Corollary 12. If there is some sequence of n consecutive disordering pairs (M, n), (M +
1, n), . . . , (M + n − 1, n), then for all m ≥ M , (m, n) is a disordering pair.

In general, we may not be able to generate splittable disordering profiles from splittable
disordering profiles as in the proof of Lemma 11, but it does work when n = 3.

Lemma 13. There exist splittable disordering profiles with m voters and 3 candidates for

m ≥ 9.

Proof. There exist splittable disordering profiles with 9, 10, and 11 voters for 3 candidates,
as shown in Figures 5(a–c), justified below. We claim that by adding k triples of cyclic
preferences to each results in a splittable disordering profile with 3 candidates and m + 3k
voters for m ∈ {9, 10, 11}. Lemma 11 implies that profiles are indeed disordering profiles. We
need only supply scoring rules that show that upon insertion of a fourth candidate preferred
next-to-last by all voters, each candidate can win.

When we have 9 + 3k voters for k ≥ 0 following the preferences in Figure 5(a), the scores
for candidates a through d are respectively 5+k(1+x2), 4+2x2 +k(1+x2), 7x2 +k(1+x2),
and (9+3k)x3. Table 2 gives scoring rules under which each candidate wins. The calculations
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(a)
c1 c1 c1 c1 c1 c2 c2 c2 c2

c2 c2 c3 c3 c3 c3 c3 c3 c3

c3 c3 c2 c2 c2 c1 c1 c1 c1

(b)
c1 c1 c1 c1 c1 c2 c2 c2 c2 c3

c2 c2 c3 c3 c3 c3 c3 c3 c3 c2

c3 c3 c2 c2 c2 c1 c1 c1 c1 c1

(c)
c1 c1 c1 c1 c1 c1 c2 c2 c2 c2 c2

c2 c2 c3 c3 c3 c3 c3 c3 c3 c3 c3

c3 c3 c2 c2 c2 c2 c1 c1 c1 c1 c1

Figure 5. Splittable disordering profiles with 3 candidates and (a) 9 voters
(b) 10 voters (c) 11 voters.

scoring candidate winning
rule scores candidate

(1, 0, 0, 0) (5 + k, 4 + k, k, 0) a
(1, 3/5, 0, 0) (5 + 8k/5, 26/5 + 8k/5, 21/5 + 8k/5, 0) b
(1, 1, 0, 0) (5 + 2k, 6 + 2k, 7 + 2k, 0) c
(1, 1, 1, 0) (5 + 2k, 6 + 2k, 7 + 2k, 9 + 3k) d

Table 2. Scoring rules which allow each candidate to win in the (9+3k)-voter
splittable disordering profile from the proof of Lemma 13.

for 10 + 3k and 11 + 3k voters for k ≥ 0 following the preferences in Figures 5(b) and 5(c)
are almost identical. In fact, the same scoring rules may be used. �

Proof of Theorem 7. We start with the following lemma, which exhibits ideas we reuse to
complete the proof of the theorem. Throughout these proofs, many examples are given of
splittable disorderings; Appendix B includes these profiles and the scoring rules that show
that the examples are indeed disordering and splittable. The Maple worksheet provided on
the author’s website calculates these verifications automatically.

Lemma 14. The pair (m, n) is disordering for m ≥ 9 and n ≥ 3.

Proof. Lemma 13 constructs splittable disordering pairs (m, 3) for m ≥ 9. By definition,
there exist disordering pairs (m, 4) for 9 ≤ m ≤ 13, and by Corollary 12, there exist disor-
dering pairs of type (m, 4) for m ≥ 9. Figure 3(b) is a splittable disordering of type (6, 4).
(The preferences split between rankings two and three.) This gives a disordering pair of type
(6, 5). Figures 3(c) and 5(d) give examples of disordering pairs (4, 5) and (5, 5). (In fact,
they are splittable disordering pairs, both splitting between rankings three and four.) By
Lemma 10, there exist disordering pairs (8, 5), (10, 5), and (12, 5). By Lemma 11, there exist
disordering pairs (9, 5), (11, 5), and (13, 5). Corollaries 12 and 9 give the desired result. �

We argue similarly that the pair (m, n) is disordering for m ≥ 6 and n ≥ 4; we need only
show that there exist splittable disordering pairs (6, 4), (7, 4), and (8, 4), as well as (6, 6),
(7, 6), and (8, 6). These are given in Figures 7 through 9 and 14 through 16. Similarly, the
pair (m, n) is disordering for m ≥ 4 and n ≥ 5; again, we need exhibit splittable disordering
pairs (4, 5), (5, 5), (4, 6), (5, 6), (4, 8), and (5, 8). Figures 10 through 13 and Figures 17 and
18 give such pairs. Lastly, we justify that the pair (m, n) is disordering for m = 3 and
n ≥ 9—Figures 19 through 23 give splittable disordering pairs (3, 9), (3, 10), (3, 12), (3, 14),
and (3, 16). This proves Theorem 7. �
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4. Final Thoughts

While it is possible for all candidates to be able to win outright from a fixed set of voter
preferences, it is not possible for all rankings of candidates to appear as the cumulative results
from a fixed set of voter preferences. This topic is discussed in Saari’s [3]. An inversion of
the cumulative rankings is always possible, and is discussed in [1]. It would be of interest to
know how many voters are necessary to create a profile with all (n − 1)(n − 1)! positional
election rankings, as guaranteed by [3].

It is interesting to remark that the pairs of m and n which are disordering pairs are
symmetric except for (5, 4) and (4, 5). This appears to be a coincidence.

I conclude with the following questions. Is there a simple algorithm that takes a disordering
set of voter preferences and is able to perform some manipulations in order to generate an
augmented disordering set of voter preferences with one additional voter or one additional
candidate? If not, is there an algorithm to generate a set of m voter preferences of n
candidates in an orderly manner, without passing through the constructions above? We
might also allow voters to have non-equal power; we see through the example of Figure 3(a)
that three voters, with 2, 3, and 4 voters respectively can disorder three candidates. Which
pairs (m, n) allow for a weighted disordering? And which pairs (m, n) can be realized with a
weighted disordering with three voters with m1, m2, and m3 votes, where m1+m2+m3 = m?

5. Acknowledgments

I would like to thank Michael Orrison for his comments, suggestions, and support. I
would also like to thank Donald Saari for his comments on improving the exposition and an
anonymous referee for many helpful suggestions that have increased the article’s readability.

Appendix A. Proof of Theorem 3

In this section, we complete the proof of Theorem 3.

Lemma 15. There does not exist an (m, 3) disordering for m ≤ 8.

Proof. By Lemmas 5 and 6, we need only concern ourselves with the case that there are
three candidates c1, c2, and c3, and that there are between four and eight voters. First,
notice that if two candidates (say c1 and c2) are ranked first by the same number of voters
(say k voters), it is not possible for both candidates to win outright. This is because under
the scoring rule (1, x, 0), the score for candidate c1 will be of the form k + l1x and the score
for c2 will be of the form k + l2x. Either l1 = l2, in which case both candidates always tie,
or l1 and l2 are different, in which case one of the candidates always scores higher than the
other for all x.

Consider the possible ways in which three candidates can be ranked by m voters so that
no two candidates are ranked first the same number of times. If m = 4, the partition of
first-place votes must be 4 = 3 + 1 + 0. That is, one candidate must receive three first-place
votes, one candidate must receive one first-place vote, and the last candidate must receive
zero first-place votes. If m = 5, we must have either 5 = 4+1+0 or 5 = 3+2+0. If m = 6,
the options are either 6 = 3 + 2 + 1, 6 = 5 + 1 + 0, and 6 = 4 + 2 + 0. When m = 7, the
partition possibilites are 7 = 4 + 2 + 1, 7 = 6 + 1 + 0, 7 = 5 + 2 + 0, and 7 = 4 + 3 + 0.
Lastly, if m = 8, the five possibilites exist, namely 8 = 5+2+1, 8 = 4+3+1, 8 = 7+1+0,
8 = 6 + 2 + 0, and 8 = 5 + 3 + 0.
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After narrowing to these possibilities of first-place votes, we need to examine the number
of second-place votes needed for each candidate in order for the condition of Lemma 2 to
hold. For the sake of this discussion, assume that candidate c1 has the most first-place votes,
candidate c2 has the second most first-place votes, and candidate c3 has the fewest first-place
votes. For Lemma 2 to hold, the number of first- and second-place votes for candidate c2

must be more than those for candidate c1. Similarly, the number of first- and second-place
votes for candidate c3 must be more than those for candidate c2.

Imposing these conditions eliminates all possibilities for (m, 3) disordering pairs. We will
verify this claim in three of the above cases; the other seven examples follow from reasoning
similar to the first case presented. Consider the case of 7 = 4 + 3 + 0. That is, 7 voters
allot 4 first-place votes to c1, 3 first-place votes to c2, and zero first-place votes to c3. The
conditions in the previous paragraph imply that c2 has at least five first- and second-place
votes and that c3 must receive at least six second-place votes. This is impossible because we
know that at least two of the seven second-place votes are alloted to c2.

The two nontrivial cases are 6 = 3 + 2 + 1 and 8 = 4 + 3 + 1. With 6 voters allotting
three first-place votes to c1, two first-place votes to c2, and one first-place vote to c3, we see
that c1 may have zero second-place votes, c2 may have two second-place votes, and c3 may
have four second-place votes. While Lemma 2 holds for every pair of candidates, there is no
way for candidate c2 to win outright—under scoring rule (1, x, 0), the scores for candidates
c1, c2, and c3 are 3, 2 + 2x, and 1 + 4x, respectively. Candidate c1 wins for all x in [0, 0.5),
candidate c3 wins for all x in (0.5, 1], and the three candidates tie when x = 0.5.

When 8 voters allot four first-place votes to c1, three first-place votes to c2, and one first-
place vote to c3, we know that c2 must receive at least two second-place votes, and c3 must
receive at least five second-place votes. This leaves one second-place vote unallotted. If this
last second-place vote is alloted to c1 or c2, there is no way for candidate c3 to win. The
only other option is for c1 to receive zero second-place votes, c2 to receive two second-place
votes, and c3 to receive the remaining six second-place votes. The exact same setup occurs
as in the previous argument, with candidate c2 never able to win outright.

These techniques, when applied to the other examples, eliminate all possibilities for (m, 3)
disordering pairs when m ≤ 8. �

Lemma 16. Neither (4, 4) nor (4, 5) is a disordering pair.

Proof. We start with four voters and four candidates. We will show that there is only one
profile (up to candidate permutation) for which every candidate pair is disordered; it is
exactly the profile in Figure 1(a), which is not a disordering.

c2, c3, and c4 to have a non-increasing number of first-place votes. If c1 has three or more
first-place votes, then there must be another candidate with at least as many last-place votes
as c1. This candidate can never score higher than c1 in any scoring rule. There are three cases
that remain. Either c1 and c2 each have two first-place votes, or c1 has two first-place votes
and c2 and c3 each have one first-place vote, or all candidates each receive one first-place
vote.

If c1 and c2 each have two first-place votes and are to be disordered, Lemma 1 implies that
the candidates’ two other rankings are assigned as follows. Up to permutation, c1 is given
a second-place and fourth-place ranking and c2 is given two third-place rankings. However,
in this case, there are three unassigned last-place rankings for candidates c3 and c4, so the
candidate assigned at least two last-place rankings can never win outright against c2.
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c1 c1 c2 c2 c3

c4 c3 z z c1

c2 c2 z z c4

c3 c4 c1 c1 c2

c1 c1 c2 c2 c3

z z z c1 c4

z c2 z z c2

c2 z c1 z c1

c1 c1 c2 c2 c3

z c4 z z c1

z c2 z z c2

c2 c3 c1 c1 c4

Figure 6. Visual aid for the proof of the impossibility of a (4, 5) disordering profile.

If c1 has two first-place votes and c2 and c3 each have one first-place vote, then unless
c1’s other two rankings are last-place votes, c1 will not be disordered with at least one other
candidate. This leaves two remaining last-place votes. Neither c2, c3, nor c4 can be allocated
both last-place votes, or else that candidate would always lose against c1. Also, if c2 and c3

each have one last-place vote, then it is impossible that c2 and c3 be disordered by placement
of their remaining votes. Therefore, assume that c2 and c4 are allocated one last-place vote
each. The three remaining rankings for c4 must occur higher than c2’s third-highest ranking,
which itself cannot be lower than third-place. Therefore, c4 has three second-place rankings.
So that c2 and c3 are disordered, c2 must occupy the fourth second-place ranking. This gives
us the exact profile in Figure 1(a), which is not a disordering profile.

If all candidates have one first-place ranking, then notice that the only way to disorder
any pair of candidates is if one of the candidates has at least two third-place rankings. This
implies that out of all six pairs of candidates, at least two candidates have two third-place
rankings, so exactly two must have exactly two third-place rankings. However, these two
candidates could not possibly be disordered, which eliminates this case and proves that no
disordering profiles exist with four candidates and four voters.

In the case with five voters and four candidates, we again start by considering the number
of first-place votes that a candidate may receive. We continue to use our convention with
respect to the number of first-place votes a candidate receives. If c1 has three or more first-
place votes, then if another candidate has as many last-place votes as c1, that candidate
would never win outright against c1. Therefore c1 must have exactly three first-place votes,
two last-place votes and c2, c3, and c4 would each have one last-place vote. If c2 has two
first-place votes, then c3 and c4 cannot be disordered. On the other hand, if c2 and c3 each
have one first-place vote, then c2 and c3 cannot be disordered.

We are then restricted to the case where c1 has two first-place votes. We again break into
two sub-cases, where either c2 also has two first-place votes and c3 receives the remaining
first-place vote, or where c2, c3, and c4 each receive one first-place vote. In the former
subcase, c1 and c2 each have three rankings remaining. If there is any chance of c1 and c2

being disordered, then (up to permutation) c1 has at least one second-place ranking, c2 has
at least two third-place rankings, leaving at least two last-place rankings for c3 and c4. If
either c3 or c4 has two last-place rankings, then this candidate will never win outright against
candidate c1. The only profiles that remain to investigate are those in Figure 6.

In each profile, if c3 and c4 are to be disordered, there must be more second-place rankings
for c4 than c3; however, this implies that c2 and c3 are not disordered, which eliminates these
possibilities.

The final subcase is when c1 has two first-place votes, and candidates c2, c3, and c4 each
have one first-place vote. Our argument now focuses on the last-pace votes each candidate
receives. If any of c2, c3, or c4 has three last-place votes, then they cannot win outright
against c1. If c1 has three last-place votes, then the other two last-place votes are either for
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the same candidate, in which case the other two candidates cannot be disordered, or for two
different candidates, in which case those two candidates cannot be disordered. If c1 has one
last-place vote, then either two other candidates each have two last-place votes, in which case
they cannot be disordered, or one candidate has two last-place votes and the remaining two
candidates each have one last-place votes. These latter two candidates cannot be disordered
with their remaining three votes.

We have eliminated all cases except for the case that c1 has two last-place votes. If another
candidate (say c2) has two last-place votes, then one of c3 or c4 has at least two second-place
votes, and would always win against c2. This leaves the last-place votes to be allocated as
c1 with two and c2, c3, and c4 each with one (just as with the first-place votes). However
with so much symmetry, it is not possible for any of the pairs c2 and c3, or c2 and c4, or c3

and c4 to be disordering. This eliminates all profiles with four candidates and five voters as
possible disordering profiles and completes the proof of Theorem 3. �

Appendix B. Disordering Profiles and Scoring Rules

In this appendix are examples of splittable disordering profiles for various m and n. For
completeness, I also include scoring rules which prove that the profiles are indeed disordering
and splittable. The scoring rule labeled xi is the rule under which candidate ci wins outright
of the n candidates. The grey row is the insertion of candidate cn+1, and the scoring rule
labeled x′

i is the rule under which candidate ci wins outright of the n + 1 candidates in the
modified profile.

x1 x2 x3 x4 x′

1 x′

2 x′

3 x′

4 x′

5

c3 c1 c1 c2 c2 c1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c3 c3 c3 c4 0.0 0.8 1.0 1.0 0.0 0.8 1.0 0.8 1.0
c5 c5 c5 c5 c5 c5 − − − − 0.0 0.0 0.7 0.7 1.0
c4 c4 c4 c4 c4 c3 0.0 0.0 0.1 1.0 0.0 0.0 0.7 0.7 1.0
c1 c3 c2 c1 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7. A splittable disordering profile with four candidates and six vot-
ers, along with the scoring rules under which each candidate wins. The fifth
candidate is inserted in position 3.

x1 x2 x3 x4 x′

1 x′

2 x′

3 x′

4 x′

5

c1 c1 c1 c2 c2 c3 c4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c4 c3 c3 c3 c4 c2 c2 0.0 0.6 1.0 1.0 0.0 0.6 1.0 1.0 1.0
c5 c5 c5 c5 c5 c5 c5 − − − − 0.0 0.1 0.1 0.9 1.0
c3 c4 c4 c4 c3 c4 c1 0.0 0.0 0.2 1.0 0.0 0.1 0.1 0.9 0.0
c2 c2 c2 c1 c1 c1 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 8. A splittable disordering profile with four candidates and seven
voters, along with the scoring rules under which each candidate wins. The
fifth candidate is inserted in position 3.
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x1 x2 x3 x4 x′

1 x′

2 x′

3 x′

4 x′

5

c1 c1 c1 c1 c2 c2 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c3 c3 c3 c3 c3 c4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
c5 c5 c5 c5 c5 c5 c5 c5 − − − − 0.0 0.0 0.0 0.0 1.0
c4 c4 c4 c4 c4 c4 c4 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
c3 c3 c2 c2 c1 c1 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 9. A splittable disordering profile with four candidates and eight
voters, along with the scoring rules under which each candidate wins. The
fifth candidate is inserted in position 3.

x1 x2 x3 x4 x5 x′

1 x′

2 x′

3 x′

4 x′

5 x′

6

c1 c1 c5 c4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c3 c2 c2 0.0 1.0 1.0 0.9 0.9 0.0 0.0 0.0 0.0 0.0 1.0
c3 c5 c3 c5 0.0 0.0 1.0 0.9 0.9 0.0 0.0 0.0 0.0 0.0 1.0
c6 c6 c6 c6 − − − − − 0.0 0.0 0.0 0.0 0.0 1.0
c4 c4 c4 c3 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
c5 c2 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 10. A splittable disordering profile with five candidates and four vot-
ers, along with the scoring rules under which each candidate wins. The sixth
candidate is inserted in position 4.

x1 x2 x3 x4 x5 x′

1 x′

2 x′

3 x′

4 x′

5 x′

6

c4 c1 c3 c1 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c2 c5 c3 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
c3 c4 c4 c3 c1 0.0 0.0 1.0 1.0 0.9 0.0 0.0 1.0 1.0 0.9 1.0
c6 c6 c6 c6 c6 − − − − − 0.0 0.0 0.0 0.9 0.9 1.0
c5 c5 c5 c4 c4 0.0 0.0 0.0 0.9 0.9 0.0 0.0 0.0 0.9 0.9 0.0
c1 c3 c1 c2 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 11. A splittable disordering profile with five candidates and five vot-
ers, along with the scoring rules under which each candidate wins. The sixth
candidate is inserted in position 4.
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x1 x2 x3 x4 x5 x6 x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7

c6 c1 c3 c1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c5 c5 c2 0.0 1.0 1.0 1.0 1.0 0.6 0.0 1.0 1.0 1.0 1.0 0.6 1.0
c3 c3 c4 c4 0.0 0.2 1.0 1.0 0.6 0.6 0.0 0.2 1.0 1.0 0.6 0.6 1.0
c7 c7 c7 c7 − − − − − − 0.0 0.2 0.0 0.6 0.6 0.6 1.0
c4 c4 c2 c6 0.0 0.2 0.0 0.6 0.6 0.6 0.0 0.2 0.0 0.6 0.6 0.6 0.0
c5 c6 c6 c5 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.0
c1 c2 c1 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 12. A splittable disordering profile with six candidates and four vot-
ers, along with the scoring rules under which each candidate wins. The seventh
candidate is inserted in position 4.

x1 x2 x3 x4 x5 x6 x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7

c1 c1 c2 c3 c4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c5 c3 c2 c5 0.0 1.0 1.0 0.6 1.0 1.0 0.0 1.0 1.0 0.6 1.0 1.0 1.0
c6 c3 c6 c6 c3 0.0 0.0 1.0 0.6 0.6 1.0 0.0 0.0 1.0 0.6 0.6 1.0 1.0
c7 c7 c7 c7 c7 − − − − − − 0.0 0.0 0.0 0.6 0.6 0.6 1.0
c5 c4 c4 c4 c1 0.0 0.0 0.0 0.6 0.6 0.6 0.0 0.0 0.0 0.6 0.6 0.6 0.0
c4 c6 c5 c5 c6 0.0 0.0 0.0 0.6 0.6 0.6 0.0 0.0 0.0 0.6 0.6 0.6 0.0
c3 c2 c1 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 13. A splittable disordering profile with six candidates and five vot-
ers, along with the scoring rules under which each candidate wins. The seventh
candidate is inserted in position 4.

x1 x2 x3 x4 x5 x6 x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7

c1 c1 c1 c2 c3 c4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c5 c5 c5 c6 0.0 1.0 0.6 0.9 1.0 1.0 0.0 1.0 0.6 0.9 1.0 1.0 1.0
c3 c6 c6 c6 c6 c5 0.0 0.6 0.6 0.9 0.4 1.0 0.0 0.6 0.6 0.9 0.4 1.0 1.0
c4 c4 c2 c4 c4 c1 0.0 0.6 0.6 0.9 0.0 0.0 0.0 0.6 0.6 0.9 0.0 0.0 1.0
c7 c7 c7 c7 c7 c7 − − − − − − 0.0 0.6 0.6 0.0 0.0 0.0 1.0
c6 c3 c3 c3 c2 c3 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0 1.0
c5 c5 c4 c1 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 14. A splittable disordering profile with six candidates and six voters,
along with the scoring rules under which each candidate wins. The seventh
candidate is inserted in position 5.
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x1 x2 x3 x4 x5 x6

c1 c1 c1 c2 c2 c3 c5 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c3 c3 c4 c4 c6 0.0 1.0 1.0 1.0 0.9 1.0
c5 c3 c4 c4 c6 c6 c3 0.0 0.0 1.0 1.0 0.9 1.0
c4 c6 c5 c5 c5 c1 c4 0.0 0.0 0.0 1.0 0.9 0.9
c6 c5 c6 c6 c3 c5 c2 0.0 0.0 0.0 0.0 0.9 0.9
c3 c4 c2 c1 c1 c2 c1 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7

c1 c1 c1 c2 c2 c3 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c2 c3 c3 c4 c4 c6 0.0 1.0 1.0 1.0 0.9 1.0 1.0
c5 c3 c4 c4 c6 c6 c3 0.0 0.0 1.0 1.0 0.9 1.0 1.0
c7 c7 c7 c7 c7 c7 c7 0.0 0.0 0.0 0.7 0.9 0.9 1.0
c4 c6 c5 c5 c5 c1 c4 0.0 0.0 0.0 0.7 0.9 0.9 0.0
c6 c5 c6 c6 c3 c5 c2 0.0 0.0 0.0 0.0 0.9 0.9 0.0
c3 c4 c2 c1 c1 c2 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 15. A splittable disordering profile with six candidates and seven
voters, along with the scoring rules under which each candidate wins. The
seventh candidate is inserted in position 4.

x1 x2 x3 x4 x5 x6

c1 c1 c1 c1 c2 c2 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0
c2 c4 c4 c4 c5 c5 c6 c2 0.0 1.0 0.9 1.0 1.0 1.0
c5 c6 c6 c6 c6 c6 c5 c5 0.0 0.0 0.9 0.9 0.6 1.0
c4 c3 c3 c3 c3 c3 c4 c4 0.0 0.0 0.9 0.9 0.6 0.0
c6 c5 c5 c5 c1 c4 c3 c6 0.0 0.0 0.0 0.0 0.6 0.0
c3 c2 c2 c2 c4 c1 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7

c1 c1 c1 c1 c2 c2 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c4 c4 c4 c5 c5 c6 c2 0.0 1.0 0.9 1.0 1.0 1.0 1.0
c5 c6 c6 c6 c6 c6 c5 c5 0.0 0.0 0.9 0.9 0.6 1.0 1.0
c4 c3 c3 c3 c3 c3 c4 c4 0.0 0.0 0.9 0.9 0.6 0.0 1.0
c7 c7 c7 c7 c7 c7 c7 c7 0.0 0.0 0.0 0.0 0.6 0.0 1.0
c6 c5 c5 c5 c1 c4 c3 c6 0.0 0.0 0.0 0.0 0.6 0.0 0.0
c3 c2 c2 c2 c4 c1 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 16. A splittable disordering profile with six candidates and eight
voters, along with the scoring rules under which each candidate wins. The
seventh candidate is inserted in position 5.
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x1 x2 x3 x4 x5 x6 x7 x8

c1 c1 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c4 c2 c5 c6 0.0 0.8 1.0 0.9 0.7 0.7 1.0 0.7
c3 c7 c3 c8 0.0 0.5 1.0 0.62 0.6 0.6 1.0 0.7
c5 c8 c8 c2 0.0 0.0 0.0 0.62 0.6 0.6 1.0 0.7
c7 c4 c7 c7 0.0 0.0 0.0 0.62 0.55 0.6 1.0 0.4
c6 c6 c6 c4 0.0 0.0 0.0 0.55 0.55 0.6 0.0 0.4
c8 c5 c4 c5 0.0 0.0 0.0 0.5 0.55 0.0 0.0 0.4
c2 c3 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9

c1 c1 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c4 c2 c5 c6 0.0 0.8 1.0 0.9 0.7 0.7 1.0 0.7 1.0
c3 c7 c3 c8 0.0 0.5 1.0 0.62 0.6 0.6 1.0 0.7 1.0
c5 c8 c8 c2 0.0 0.0 0.0 0.62 0.6 0.6 0.9 0.7 1.0
c9 c9 c9 c9 0.0 0.0 0.0 0.62 0.55 0.6 0.9 0.4 1.0
c7 c4 c7 c7 0.0 0.0 0.0 0.62 0.55 0.6 0.9 0.4 0.0
c6 c6 c6 c4 0.0 0.0 0.0 0.55 0.55 0.6 0.0 0.4 0.0
c8 c5 c4 c5 0.0 0.0 0.0 0.5 0.55 0.0 0.0 0.4 0.0
c2 c3 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 17. A splittable disordering profile with eight candidates and four
voters, along with the scoring rules under which each candidate wins. The
ninth candidate is inserted in position 5.
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x1 x2 x3 x4 x5 x6 x7 x8

c1 c1 c4 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c5 c2 c6 c5 0.0 0.8 0.7 0.4 0.9 0.7 1.0 1.0
c3 c3 c8 c8 c8 0.0 0.5 0.6 0.4 0.62 0.6 1.0 1.0
c7 c7 c7 c4 c7 0.0 0.5 0.6 0.4 0.62 0.6 1.0 0.5
c6 c6 c5 c7 c6 0.0 0.0 0.55 0.35 0.62 0.6 0.0 0.5
c8 c4 c6 c5 c4 0.0 0.0 0.55 0.35 0.55 0.6 0.0 0.5
c5 c8 c3 c3 c2 0.0 0.0 0.55 0.0 0.5 0.0 0.0 0.0
c4 c2 c1 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9

c1 c1 c4 c2 c3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c5 c2 c6 c5 0.0 0.8 0.7 0.4 0.9 0.7 1.0 1.0 1.0
c3 c3 c8 c8 c8 0.0 0.5 0.6 0.4 0.62 0.6 1.0 1.0 1.0
c7 c7 c7 c4 c7 0.0 0.5 0.6 0.4 0.62 0.6 1.0 0.5 1.0
c9 c9 c9 c9 c9 0.0 0.0 0.55 0.35 0.62 0.6 0.0 0.5 1.0
c6 c6 c5 c7 c6 0.0 0.0 0.55 0.35 0.62 0.6 0.0 0.5 0.0
c8 c4 c6 c5 c4 0.0 0.0 0.55 0.35 0.55 0.6 0.0 0.5 0.0
c5 c8 c3 c3 c2 0.0 0.0 0.55 0.0 0.5 0.0 0.0 0.0 0.0
c4 c2 c1 c1 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 18. A splittable disordering profile with eight candidates and five
voters, along with the scoring rules under which each candidate wins. The
ninth candidate is inserted in position 5.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

c1 c9 c8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.9 0.9 1.0 0.9 0.9 1.0 1.0 0.3 0.3
c5 c3 c3 0.9 0.8 1.0 0.9 0.9 0.3 0.3 0.3 0.3
c4 c4 c2 0.9 0.8 0.0 0.9 0.9 0.3 0.3 0.3 0.3
c7 c1 c5 0.9 0.0 0.0 0.7 0.7 0.3 0.3 0.3 0.3
c6 c8 c6 0.0 0.0 0.0 0.7 0.5 0.3 0.25 0.3 0.3
c9 c5 c9 0.0 0.0 0.0 0.7 0.5 0.0 0.25 0.25 0.3
c8 c7 c4 0.0 0.0 0.0 0.7 0.0 0.0 0.25 0.25 0.0
c3 c2 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9 x′

10

c1 c9 c8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.9 0.9 1.0 0.9 0.9 1.0 1.0 0.3 0.3 1.0
c5 c3 c3 0.9 0.8 1.0 0.9 0.9 0.3 0.3 0.3 0.3 1.0
c4 c4 c2 0.9 0.8 0.0 0.9 0.9 0.3 0.3 0.3 0.3 1.0
c7 c1 c5 0.9 0.0 0.0 0.7 0.7 0.3 0.3 0.3 0.3 1.0
c10 c10 c10 0.0 0.0 0.0 0.7 0.5 0.3 0.25 0.3 0.3 1.0
c6 c8 c6 0.0 0.0 0.0 0.7 0.5 0.3 0.25 0.3 0.3 0.0
c9 c5 c9 0.0 0.0 0.0 0.7 0.5 0.0 0.25 0.25 0.3 0.0
c8 c7 c4 0.0 0.0 0.0 0.7 0.0 0.0 0.25 0.25 0.0 0.0
c3 c2 c1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 19. A splittable disordering profile with nine candidates and three
voters, along with the scoring rules under which each candidate wins. The
tenth candidate is inserted in position 6.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c7 c2 c6 0.9 0.9 1.0 0.3 0.3 1.0 1.0 0.9 0.9 0.9
c8 c3 c3 0.9 0.8 1.0 0.3 0.3 0.3 0.3 0.9 0.9 0.9
c2 c10 c9 0.9 0.8 0.0 0.3 0.3 0.3 0.3 0.7 0.9 0.9
c9 c8 c1 0.9 0.0 0.0 0.3 0.3 0.3 0.3 0.7 0.7 0.7
c10 c6 c10 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.5 0.5 0.7
c5 c7 c7 0.0 0.0 0.0 0.3 0.3 0.25 0.3 0.5 0.5 0.0
c4 c9 c4 0.0 0.0 0.0 0.25 0.25 0.25 0.0 0.5 0.5 0.0
c6 c5 c8 0.0 0.0 0.0 0.0 0.25 0.25 0.0 0.5 0.0 0.0
c3 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9 x′

10 x′

11

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c7 c2 c6 0.9 0.9 1.0 0.3 0.3 1.0 1.0 0.9 0.9 0.9 1.0
c8 c3 c3 0.9 0.8 1.0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 1.0
c2 c10 c9 0.9 0.8 0.0 0.3 0.3 0.3 0.3 0.7 0.9 0.9 1.0
c9 c8 c1 0.9 0.0 0.0 0.3 0.3 0.3 0.3 0.7 0.7 0.7 1.0
c11 c11 c11 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.5 0.5 0.7 1.0
c10 c6 c10 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.5 0.5 0.7 0.0
c5 c7 c7 0.0 0.0 0.0 0.3 0.3 0.25 0.3 0.5 0.5 0.0 0.0
c4 c9 c4 0.0 0.0 0.0 0.25 0.25 0.25 0.0 0.5 0.5 0.0 0.0
c6 c5 c8 0.0 0.0 0.0 0.0 0.25 0.25 0.0 0.5 0.0 0.0 0.0
c3 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 20. A splittable disordering profile with ten candidates and three
voters, along with the scoring rules under which each candidate wins. The
eleventh candidate is inserted in position 6.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

c4 c1 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.9 0.9 1.0 0.3 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c3 c8 c9 0.9 0.8 1.0 0.3 0.3 0.3 0.3 1.0 1.0 1.0 1.0 1.0
c10 c3 c11 0.9 0.8 1.0 0.3 0.3 0.3 0.3 0.3 0.3 1.0 1.0 1.0
c12 c12 c2 0.9 0.8 0.0 0.3 0.3 0.3 0.3 0.3 0.3 1.0 1.0 1.0
c8 c11 c1 0.9 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.8 1.0 0.7
c9 c10 c10 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.25 0.25 0.8 0.8 0.7
c11 c9 c6 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.25 0.25 0.0 0.8 0.7
c7 c7 c4 0.0 0.0 0.0 0.3 0.3 0.25 0.3 0.25 0.0 0.0 0.0 0.7
c5 c5 c8 0.0 0.0 0.0 0.25 0.3 0.25 0.0 0.25 0.0 0.0 0.0 0.7
c6 c4 c12 0.0 0.0 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.7
c1 c2 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9 x′

10 x′

11 x′

12 x′

13

c4 c1 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.3 1.0 1.0 0.3 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c3 c8 c9 0.3 0.3 1.0 0.3 0.3 0.3 0.3 1.0 1.0 1.0 1.0 1.0 1.0
c10 c3 c11 0.3 0.3 1.0 0.3 0.3 0.3 0.3 0.3 0.3 1.0 1.0 1.0 1.0
c12 c12 c2 0.3 0.3 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.8 1.0 1.0
c13 c13 c13 0.3 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.8 0.7 1.0
c8 c11 c1 0.3 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.8 0.7 0.0
c9 c10 c10 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.25 0.25 0.8 0.65 0.7 0.0
c11 c9 c6 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.25 0.25 0.0 0.65 0.7 0.0
c7 c7 c4 0.0 0.0 0.0 0.3 0.3 0.25 0.3 0.25 0.0 0.0 0.0 0.7 0.0
c5 c5 c8 0.0 0.0 0.0 0.25 0.3 0.25 0.0 0.25 0.0 0.0 0.0 0.7 0.0
c6 c4 c12 0.0 0.0 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.7 0.0
c1 c2 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 21. A splittable disordering profile with twelve candidates and three
voters, along with the scoring rules under which each candidate wins. The
thirteenth candidate is inserted in position 6.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.1 1.0 1.0 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9
c8 c3 c3 0.1 0.1 1.0 0.5 0.7 0.5 0.4 1.0 1.0 1.0 1.0 1.0 0.9 0.9
c9 c2 c10 0.1 0.1 0.0 0.5 0.7 0.5 0.4 0.8 1.0 1.0 1.0 1.0 0.9 0.9
c11 c12 c1 0.1 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 1.0 1.0 0.9 0.9
c13 c14 c14 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 0.8 0.7 0.9 0.9
c10 c13 c11 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 0.8 0.7 0.9 0.2
c6 c8 c13 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.7 0.7 0.7 0.9 0.2
c12 c9 c4 0.0 0.0 0.0 0.5 0.7 0.4 0.4 0.7 0.8 0.7 0.7 0.7 0.0 0.2
c7 c7 c12 0.0 0.0 0.0 0.4 0.7 0.4 0.4 0.7 0.7 0.7 0.7 0.6 0.0 0.2
c5 c5 c9 0.0 0.0 0.0 0.4 0.7 0.4 0.0 0.7 0.7 0.7 0.7 0.0 0.0 0.2
c14 c11 c8 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.7 0.0 0.7 0.7 0.0 0.0 0.2
c4 c10 c6 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0
c3 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9 x′

10 x′

11 x′

12 x′

13 x′

14 x′

15

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c2 c6 c7 0.1 1.0 1.0 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0
c8 c3 c3 0.1 0.1 1.0 0.5 0.7 0.5 0.4 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0
c9 c2 c10 0.1 0.1 0.0 0.5 0.7 0.5 0.4 0.8 1.0 1.0 1.0 1.0 0.9 0.9 1.0
c11 c12 c1 0.1 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 1.0 1.0 0.9 0.9 1.0
c13 c14 c14 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 0.8 0.7 0.9 0.9 1.0
c10 c13 c11 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.8 0.8 0.7 0.9 0.2 1.0
c15 c15 c15 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.7 0.7 0.7 0.8 0.2 1.0
c6 c8 c13 0.0 0.0 0.0 0.5 0.7 0.5 0.4 0.8 0.8 0.7 0.7 0.7 0.8 0.2 0.0
c12 c9 c4 0.0 0.0 0.0 0.5 0.7 0.4 0.4 0.7 0.8 0.7 0.7 0.7 0.0 0.2 0.0
c7 c7 c12 0.0 0.0 0.0 0.4 0.7 0.4 0.4 0.7 0.7 0.7 0.7 0.6 0.0 0.2 0.0
c5 c5 c9 0.0 0.0 0.0 0.4 0.7 0.4 0.0 0.7 0.7 0.7 0.7 0.0 0.0 0.2 0.0
c14 c11 c8 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.7 0.0 0.7 0.7 0.0 0.0 0.2 0.0
c4 c10 c6 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0
c3 c1 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 22. A splittable disordering profile with fourteen candidates and three
voters, along with the scoring rules under which each candidate wins. The
fifteenth candidate is inserted in position 8.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c6 c2 c7 0.2 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.7 0.9 0.9
c3 c8 c9 0.2 0.2 1.0 0.5 0.5 0.7 0.4 1.0 1.0 1.0 1.0 1.0 0.8 0.7 0.9 0.9
c10 c3 c11 0.2 0.2 1.0 0.5 0.5 0.7 0.4 0.5 0.8 1.0 1.0 1.0 0.8 0.7 0.9 0.9
c13 c14 c2 0.2 0.2 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 1.0 0.8 0.7 0.9 0.9
c15 c12 c1 0.2 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 1.0 0.6 0.5 0.9 0.9
c16 c15 c13 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.6 0.5 0.9 0.9
c14 c16 c16 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.3 0.5 0.2 0.8
c8 c11 c12 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.3 0.4 0.2 0.0
c9 c10 c10 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.1 0.8 0.8 0.7 0.7 0.3 0.4 0.2 0.0
c12 c6 c4 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.1 0.7 0.0 0.7 0.7 0.3 0.4 0.2 0.0
c7 c7 c14 0.0 0.0 0.0 0.4 0.5 0.6 0.4 0.1 0.7 0.0 0.7 0.0 0.3 0.4 0.2 0.0
c11 c9 c6 0.0 0.0 0.0 0.4 0.5 0.6 0.0 0.1 0.7 0.0 0.7 0.0 0.3 0.0 0.2 0.0
c5 c5 c15 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.0
c4 c13 c8 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
c2 c1 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x′

1 x′

2 x′

3 x′

4 x′

5 x′

6 x′

7 x′

8 x′

9 x′

10 x′

11 x′

12 x′

13 x′

14 x′

15 x′

16 x′

17

c1 c4 c5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c6 c2 c7 0.2 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.7 0.9 0.9 1.0
c3 c8 c9 0.2 0.2 1.0 0.5 0.5 0.7 0.4 1.0 1.0 1.0 1.0 1.0 0.8 0.7 0.9 0.9 1.0
c10 c3 c11 0.2 0.2 1.0 0.5 0.5 0.7 0.4 0.5 0.8 1.0 1.0 1.0 0.8 0.7 0.9 0.9 1.0
c13 c14 c2 0.2 0.2 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 1.0 0.8 0.7 0.9 0.9 1.0
c15 c12 c1 0.2 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 1.0 0.6 0.5 0.9 0.9 1.0
c16 c15 c13 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.6 0.5 0.9 0.9 1.0
c17 c17 c17 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.3 0.5 0.2 0.8 1.0
c14 c16 c16 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.3 0.5 0.2 0.8 0.0
c8 c11 c12 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.5 0.8 0.8 0.8 0.8 0.3 0.4 0.2 0.0 0.0
c9 c10 c10 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.1 0.8 0.8 0.7 0.7 0.3 0.4 0.2 0.0 0.0
c12 c6 c4 0.0 0.0 0.0 0.5 0.5 0.7 0.4 0.1 0.7 0.0 0.7 0.7 0.3 0.4 0.2 0.0 0.0
c7 c7 c14 0.0 0.0 0.0 0.4 0.5 0.6 0.4 0.1 0.7 0.0 0.7 0.0 0.3 0.4 0.2 0.0 0.0
c11 c9 c6 0.0 0.0 0.0 0.4 0.5 0.6 0.0 0.1 0.7 0.0 0.7 0.0 0.3 0.0 0.2 0.0 0.0
c5 c5 c15 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.0 0.0
c4 c13 c8 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
c2 c1 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 23. A splittable disordering profile with sixteen candidates and three
voters, along with the scoring rules under which each candidate wins. The
seventeenth candidate is inserted in position 8.
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Appendix C. Sample Maple Calculations

We include a representative sample of the Maple code used to verify the claims in this
article. The following Maple code shows that the 3-voter 9-candidate candidate preference
lists given in Figures 3(d) and 19 is indeed disordering and splittable between preferences
5 and 6. The variable n represents the number of candidates and m represents the number
of voters. After calculating the scoring rule generated by the preferences, we verify that n
different scoring rules elect a different candidate. Following this, we insert a new candidate
(c10) in position 6, and generate n + 1 new rules. Often, this is simply a slight modification
of the previously defined rules. A copy of the entire Maple file is available directly from the
author, or from the author’s website, http://qcpages.qc.edu/˜chanusa/papers.html.

n, m := 9, 3

for j from 1 to n do f[j]:=0; od:

for i from 1 to m do

for j from 1 to n do

f[op(M[j,i])]:=f[op(M[j,i])]+x[j];

od; od;

ScoringRule:=[seq(f[j],j=1..n)];

ScoringRule := [x1 + x5 + x9, x9 + x2 + x4, 2 x3 + x9, x8 + 2 x4, x3 + x7 + x5, x2 + 2 x6,
x5 + x8 + x2, x8 + x6 + x1, 2 x7 + x1]

k:=0.9:

ThisRule:=[1,k,k,k,k,0,0,0,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.9: l:=0.8:

ThisRule:=[1,k,l,l,0,0,0,0,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
ThisRule:=[1,1,1,0,0,0,0,0,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.9: l:=0.7: p:=0.5:

ThisRule:=[1,k,k,k,l,l,l,l,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.9: l:=0.7: p:=0.5:

ThisRule:=[1,k,k,k,l,p,p,0,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.9: l:=0.7:

ThisRule:=[1,k,k,k,l,l,0,0,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.3: l:=0.25:

ThisRule:=[1,1,k,k,k,l,l,l,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.3: l:=0.25:

ThisRule:=[1,k,k,k,k,k,l,l,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));
k:=0.3: l:=0.25:
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ThisRule:=[1,k,k,k,k,k,k,l,0];

FindMax(subs({seq(x[j]=ThisRule[j],j=1..n)},ScoringRule));

ThisRule := [1, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0]
[1.9, 1.8, 1.8, 1.8, 1.8, 0.9, 1.8, 1, 1]

c1

ThisRule := [1, 0.9, 0.8, 0.8, 0, 0, 0, 0, 0]
[1, 1.7, 1.6, 1.6, 0.8, 0.9, 0.9, 1, 1]

c2

ThisRule := [1, 1, 1, 0, 0, 0, 0, 0, 0]
[1, 1, 2, 0, 1, 1, 1, 1, 1]

c3

ThisRule := [1, 0.9, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7, 0]
[1.7, 1.8, 1.8, 2.5, 2.3, 2.3, 2.3, 2.4, 2.4]

c4

ThisRule := [1, 0.9, 0.9, 0.9, 0.7, 0.5, 0.5, 0, 0]
[1.7, 1.8, 1.8, 1.8, 2.1, 1.9, 1.6, 1.5, 2.0]

c5

ThisRule := [1, 0.9, 0.9, 0.9, 0.7, 0.7, 0, 0, 0]
[1.7, 1.8, 1.8, 1.8, 1.6, 2.3, 1.6, 1.7, 1]

c6

ThisRule := [1, 1, 0.3, 0.3, 0.3, 0.25, 0.25, 0.25, 0]
[1.3, 1.3, 0.6, 0.85, 0.85, 1.50, 1.55, 1.50, 1.50]

c7

ThisRule := [1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.25, 0.25, 0]
[1.3, 0.6, 0.6, 0.85, 0.85, 0.9, 0.85, 1.55, 1.50]

c8

ThisRule := [1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.25, 0]
[1.3, 0.6, 0.6, 0.85, 0.9, 0.9, 0.85, 1.55, 1.6]

c9

M:=InsertCandidate(M,6);

n,m := Dimension(M);

for j from 1 to n do f[j]:=0; od:

for i from 1 to m do

for j from 1 to n do

f[op(M[j,i])]:=f[op(M[j,i])]+x[j];

od; od;

ScoringRule:=[seq(f[j],j=1..n)];

[individual candidate scoring rules input omitted]
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M :=





c1 c9 c8

c2 c6 c7

c5 c3 c3

c4 c4 c2

c7 c1 c5

c10 c10 c10

c6 c8 c6

c9 c5 c9

c8 c7 c4

c3 c2 c1





ScoringRule := [x1 + x5 + x10, x2 + x10 + x4, x10 + 2 x3, 2 x4 + x9, x3 + x8 + x5, 2 x7 + x2,
x5 + x9 + x2, x9 + x7 + x1, 2 x8 + x1, 3 x6]

ThisRule := [1, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0]
[1.9, 1.8, 1.8, 1.8, 1.8, 0.9, 1.8, 1, 1, 0]

c1

ThisRule := [1, 0.9, 0.8, 0.8, 0, 0, 0, 0, 0, 0]
[1, 1.7, 1.6, 1.6, 0.8, 0.9, 0.9, 1, 1, 0]

c2

ThisRule := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 2, 0, 1, 1, 1, 1, 1, 0]

c3

ThisRule := [1, 0.9, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7, 0.7, 0]
[1.7, 1.8, 1.8, 2.5, 2.3, 2.3, 2.3, 2.4, 2.4, 2.1]

c4

ThisRule := [1, 0.9, 0.9, 0.9, 0.7, 0.5, 0.5, 0.5, 0, 0]
[1.7, 1.8, 1.8, 1.8, 2.1, 1.9, 1.6, 1.5, 2.0, 1.5]

c5

ThisRule := [1, 1, 0.3, 0.3, 0.3, 0.3, 0.3, 0, 0, 0]
[1.3, 1.3, 0.6, 0.6, 0.6, 1.6, 1.3, 1.3, 1, 0.9]

c6

ThisRule := [1, 1, 0.3, 0.3, 0.3, 0.3, 0.25, 0.25, 0.25, 0]
[1.3, 1.3, 0.6, 0.85, 0.85, 1.50, 1.55, 1.50, 1.50, 0.9]

c7

ThisRule := [1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.25, 0.25, 0]
[1.3, 0.6, 0.6, 0.85, 0.85, 0.9, 0.85, 1.55, 1.50, 0.9]

c8

ThisRule := [1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.25, 0, 0]
[1.3, 0.6, 0.6, 0.6, 0.85, 0.9, 0.6, 1.3, 1.50, 0.9]

c9

ThisRule := [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[2, 2, 2, 2, 2, 1, 2, 1, 1, 3]

c10
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