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Definition. A graph G is connected if for every pair of vertices
a and b in G , there is a path from a to b in G .

That is, there exists a sequence of distinct vertices v0, v1, . . . , vk such
that v0 = a, vk = b, and vi−1vi is an edge of G for all i , 1 ≤ i ≤ k .

Lemma A. IF there is a path from vertex a to vertex b in G

and a path from vertex b to vertex c in G ,
THEN there is a path from vertex a to vertex c in G .

Proof. By hypothesis,

◮ There exist paths P : av1v2 · · · vkb and Q : bw1w2 · · ·wlc in G .

◮ If all the vertices are distinct, path R :

◮ If not all vertices are distinct, then choose the first vertex
vp in P that is also a vertex wq in Q.
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Lemmas A and B

Lemma B. Let G be a connected graph. Suppose that G contains a
cycle C and e is an edge of C . The graph H = G \ e is connected.

Proof. Let v and w be two vertices of H .
We need to show that there is a path from v to w in H.

Because G is connected, there exists a path P : v → w in G .
If P does not pass through e, then .

If P does pass through e = xy , break up P .
Define P1 : v → x , P2 : y → w , both paths in H.
We can write the cycle C as C = xz1z2 · · · zkyx .
Therefore, there is a path Q : x → y = xz1z2 · · · zky in H.

Apply Lemma A to show there is a path from v to w in H.
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Connectivity and edges

Theorem 1.3.1. If G is a connected graph with p vertices and
q edges, then p ≤ q + 1.

Proof. Induction on the number of edges of G .

◮ Base Case. If G is connected and has fewer than three
edges, then G equals either:

◮ Inductive Step.

Inductive hypothesis:

p ≤ q + 1 holds for all connected graphs with k ≥ 3 edges.

We want to show:

p ≤ q + 1 holds for all connected graphs with k + 1 edges.

Break into cases, depending on whether G contains a cycle:
(next page)
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◮ Case 1. There is a cycle C in G .

◮ Case 2. There is no cycle in G .
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Find a path P in G that can not be extended.

Claim: The endpoints of P , a and b, are leaves of G .
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◮ Case 1. There is a cycle C in G .

Use Lemma B. After removing an edge from C , the resulting graph
H is connected. . .

◮ Case 2. There is no cycle in G .

Find a path P in G that can not be extended.

Claim: The endpoints of P , a and b, are leaves of G .

Remove a and its incident edge to form a new graph H.
Apply the inductive hypothesis to H?

�

⋆ Important Induction Item: Always remove edges. ⋆
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Definition. A tree is a connected graph that contains no cycles.
Definition. A forest is a graph that contains no cycle.

These definitions imply: (Fill in the blanks)

1. Every connected component of a forest .

2. A connected forest .

3. A subgraph of a forest .

4. A subgraph of a tree .

5. Every tree is a forest.

Trees are the smallest connected graphs; the following theorems
show this and help classify graphs which are trees.

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and
q edges. Then, G is a tree ⇐⇒ p = q + 1.

Thm 1.3.5. G is a tree iff there exists exactly one path between
each pair of vertices.



Trees — §1.3 29

Proof of Theorem 1.3.3

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and
q edges. Then, G is a tree ⇐⇒ p = q + 1.
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Proof. (⇒) Use reasoning like Theorem 1.3.1.
(Remove leaves one by one.)
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Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and
q edges. Then, G is a tree ⇐⇒ p = q + 1.

Proof. (⇒) Use reasoning like Theorem 1.3.1.
(Remove leaves one by one.)

(⇐) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: p 6= q+1.

A graph that is connected and is not a tree .

By Lemma B, remove an edge from this cycle to find a graph H

with vertices and edges.

Theorem 1.3.1 applied to H implies that p ≤ (q − 1) + 1, so p ≤ q.

Therefore p 6= q + 1.
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Proof of Theorem 1.3.5

Thm 1.3.5. G is a tree iff there exists exactly one path between
each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all v1, v2 ∈ V ,
there exists at least one path between v1 and v2. Suppose that
there are two paths, P1 = v1u1u2 · · · unv2 and P2 = v1w1w2 · · ·wmv2.
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Proof of Theorem 1.3.5

Thm 1.3.5. G is a tree iff there exists exactly one path between
each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all v1, v2 ∈ V ,
there exists at least one path between v1 and v2. Suppose that
there are two paths, P1 = v1u1u2 · · · unv2 and P2 = v1w1w2 · · ·wmv2.

(⇐) Suppose G is not a tree.
Either (a) G is not connected or (b) G contains a cycle.

(a) There exist two vertices v1 and v2 with no path between them.
(b) For v1, v2 in a cycle, there exist two paths between v1 and v2.

In both cases, it is not the case that between each pair of vertices,
there exists exactly one path.
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Related theorems

Definition. A bridge is an edge e such that its removal disconnects G .

Theorem 2.4.1. Suppose that G is a connected. Then

G is a tree ⇐⇒ Every edge of G is a bridge.
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(⇐) Let G be a connected graph with a cycle C .
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Related theorems

Definition. A bridge is an edge e such that its removal disconnects G .

Theorem 2.4.1. Suppose that G is a connected. Then

G is a tree ⇐⇒ Every edge of G is a bridge.

Proof. (⇒) Let e = vw be the edge of a tree G .
The graph G \ e is no longer connected because
we removed from G its one path between v and w .

(⇐) Let G be a connected graph with a cycle C .
The removal of any edge in C does not disconnect the graph.

Theorem 3.2.1. A regular graph of even degree has no bridge.

Proof. Let G be a regular graph of even degree with a bridge e = vw .
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