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Avoiding Using Least Squares

Justification for fitting data visually:

◮ Large simplifications in model development
mean that eyeballing a fit is reasonable.

◮ Mathematical methods do not necessarily imply a better fit!

◮ You can make objective judgements that computers cannot;
you know which data points should be taken more seriously.

◮ Mathematics give precise answers; every answer is fallible.
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Regression

If we have confidence in our data, we may wish to do a regression,
a method for fitting a curve through a set of points
by following a goodness-of-fit criterion.

Goal: Formulate mathematically what we do internally:
Make the discrepancies between the data and the curve small.

◮ Make the sum of the set of absolute deviations small. (Pic!)

minimize over all f the sum:
∑

(xi ,yi )

∣

∣yi − f (xi )
∣

∣

◮ Make the largest of the set of absolute deviations small.
minimize over all f the value: max

(xi ,yi )

∣

∣yi − f (xi )
∣

∣

One or the other might make more sense depending on the situation.
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Least Squares

A regression method often used is called least squares.

minimize over all f the sum:
∑

(xi ,yi )

(

yi − f (xi )
)2

◮ A middle ground, giving weight to all discrepancies and
more weight to those that are further from the curve.

◮ Easy to analyze mathematically because this is a smooth function.

Calculating minima of smooth functions: (You know how!)

◮ Differentiate with respect to each variable,
and set equal to zero.

◮ Solve the resulting system of equations.

◮ Check to see if the solutions are local minima.
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Least Squares Example

Example. Use the least-squares criterion to fit a line y = mx + b

to the data: {(1.0, 3.6), (2.1, 2.9), (3.5, 2.2), (4.0, 1.7)}.

Intution / Expectations?

Solution. We need to calculate the sum S =
∑

(xi ,yi)

[

yi − (mxi + b)
]2
.

S = (3.6−1.0m−b)2+(2.9−2.1m−b)2+(2.2−3.5m−b)2+(1.7−4.0m−b)2

Expanding, S = 29.1 − 20.8b + 4b2 − 48.38m + 21.2bm + 33.66m2

Calculating the partial derivatives and setting equal to zero:
{

∂S
∂b

= −20.8 + 8b + 21.2m = 0
∂S
∂m

= −48.38 + 21.2b + 67.32m = 0

Solving the system of equations gives: {b = 4.20332,m = −0.605027}

That is, the line that gives the least-squares fit for the data is

y = −0.605027x + 4.20332.
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Notes on the Method of Least Squares

◮ Least squares becomes messy when there are many data points.

◮ We chose least squares because it was easy. Is it really the
“right” method for the job?

◮ Least squares isn’t always easy, for example: y = Cekx .

◮ You can use least squares on transformed data, but the result
is NOT a least-squares curve for the original data.

◮ Multivariable least squares can also be done: w=ax + by + cz + d

(Would want to minimize: .)

◮ Least squares measures distance vertically.
A better measure would probably be perpendicular distance.

◮ You need to understand the concept of least squares
and know how to do least squares by hand for small examples.

◮ We’ll learn how to use Mathematica to do this for us!
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Example. A company is trying to determine how demand for a
new product depends on its price and collect the following data:

price p $9 $10 $11

demand d 1200/mo. 1000/mo. 975/mo.

The company has reason to believe that price and demand are
inversely proportional, that is, d = c

p
for some constant c .
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Example. A company is trying to determine how demand for a
new product depends on its price and collect the following data:

price p $9 $10 $11

demand d 1200/mo. 1000/mo. 975/mo.

The company has reason to believe that price and demand are
inversely proportional, that is, d = c

p
for some constant c .

→ Use the method of least squares to determine this constant c .
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Solution. Since f (p) =
c

p
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Price – Demand Curve (p. 111–114)

Solution. Since f (p) =
c

p
, then the sum S =

∑

(pi ,di )

[

di −

(

c

pi

)]2

.

Specifying datapoints gives

S=

[

1200 −
c

9

]2

+

[

1000 −
c

10

]2

+

[

975 −
c

11

]2

Setting the derivative equal to zero gives

dS

dc
=

−2

9

[

1200 −
c

9

]

+
−2

10

[

1000 −
c

10

]

+
−2

11

[

975−
c

11

]

= 0

Solving for c gives c ≈ 10517.
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New York City Temperature (similar to p. 158)
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New York City from Jan. 2010 to Dec. 2012
gives the distinct impression of a .

We need to determine the constants in:

Temp(t) = A+ B sin(C (t − D)).

Mathematica has a hard time finding all four constants at once.
Using knowledge of the seasons, we can make assumptions about
C and D. We can assume that C = .

For D, find when the sine passes through zero.
Since January is coldest and July is hottest,
the zero should occur in April; guess D ≈ 0.3.

Fitting to Temp(t) = A+ B sin[2π(t − 0.3)]

gives: Temp(t) = 56.5 + 20.6 sin[2π(t − 0.3)] 2010 2011 2012 2013
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