The Need-to-know List

In order to be able to fully appreciate the calculus that you learn this year, you need to be completely comfortable with the following fundamental building blocks.

1. Arithmetic, Algebra, and Fractions

$$(a+b)^{2} = a^{2} + 2ab + b^{2}, \text{ NOT} = a^{2} + b^{2}!!!!!$$

$$a^{2} - b^{2} = (a+b) \times (a-b)$$

$$x^{3} + y^{3} = (x+y) \times (x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x-y) \times (x^{2} + xy + y^{2})$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} = \frac{ad}{bc}$$

$$\frac{a}{b} = \frac{ad}{bc}$$

$$\frac{a}{b} = \frac{ad}{bc}$$

$$\frac{a}{b} = \frac{ad}{bc}$$

• Know how to **factor** and **find roots of** polynomials.

2. Powers

Simplifies	Does Not Simplify		
$x^a x^b = x^{a+b}$	$x^a + x^b$		
$a^x a^y = a^{x+y}$	$a^x + a^y$		
$x^a y^a = (xy)^a$			
$(x^a)^b = x^{ab}$	$x^{(a^b)}$		
$x^{-a} = 1/x^a$			
$\sqrt{xy} = \sqrt{x}\sqrt{y}$	$\sqrt{x+y}$		
$\sqrt{x^2} = x $			

3. Areas and Volumes

Area of a rectangle (square): $A_{\text{rect}} = lw \ (A_{\text{sq}} = l^2)$ Area of a triangle: $A_{\text{tri}} = \frac{1}{2}bh$ Area of a circle: $A_{\text{circ}} = \pi r^2$ Volume of any prism: $V_{\text{prism}} = Ah$ (rectangular prism): $(V_{\text{box}} = lwh)$ (cylinder): $(V_{\text{cyl}} = \pi r^2 h)$ Volume of a sphere: $V_{\text{sph}} = \frac{4}{3}\pi r^3$

Memorize these special values!

$$1^0 = 1$$
 $0^1 = 0$ $0^0 =$ undefined

4. Trigonometry and Triangles

SOH-CAH-TOA:
$$\sin(\theta) = \frac{\text{OPP}}{\text{HYP}}$$
, $\cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}$, $\tan(\theta) = \frac{\text{OPP}}{\text{ADJ}}$
 $\sin^2(x) + \cos^2(x) = 1$ For all x's!
 $a^2 + b^2 = c^2$ For right triangles, hypotenuse c.

Memorize these special values!

$$30^{\circ} = \pi/6$$
 $45^{\circ} = \pi/4$ $90^{\circ} = \pi/2$ $180^{\circ} = \pi$ $360^{\circ} = 2\pi$

0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\sin(0)$	$\sin(\pi/6)$	$\sin(\pi/4)$	$\sin(\pi/3)$	$\sin(\pi/2)$
$\cos(\pi/2)$	$\cos(\pi/3)$	$\cos(\pi/4)$	$\cos(\pi/6)$	$\cos(0)$

Key Identities

$$\sin(2x) = 2\sin(x)\cos(x)$$
 Sine Double Angle $\cos(2x) = \cos^2(x) - \sin^2(x)$ Cosine Double Angle $\sin^2 x = [1 - \cos(2x)]/2$ Sine Half-Angle $\cos^2 x = [1 + \cos(2x)]/2$ Cosine Half-Angle